亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Spiking neural networks (SNNs) process time-series data via internal event-driven neural dynamics whose energy consumption depends on the number of spikes exchanged between neurons over the course of the input presentation. In typical implementations of an SNN classifier, decisions are produced after the entire input sequence has been processed, resulting in latency and energy consumption levels that are fairly uniform across inputs. Recently introduced delay-adaptive SNNs tailor the inference latency -- and, with it, the energy consumption -- to the difficulty of each example, by producing an early decision when the SNN model is sufficiently ``confident''. In this paper, we start by observing that, as an SNN processes input samples, its classification decisions tend to be first under-confident and then over-confident with respect to the decision's ground-truth, unknown, test accuracy. This makes it difficult to determine a stopping time that ensures a desired level of accuracy. To address this problem, we introduce a novel delay-adaptive SNN-based inference methodology that, wrapping around any pre-trained SNN classifier, provides guaranteed reliability for the decisions produced at input-dependent stopping times. The approach entails minimal added complexity as compared to the underlying SNN, requiring only thresholding and counting operations at run time, and it leverages tools from conformal prediction (CP).

相關內容

Recently, U-shaped networks have dominated the field of medical image segmentation due to their simple and easily tuned structure. However, existing U-shaped segmentation networks: 1) mostly focus on designing complex self-attention modules to compensate for the lack of long-term dependence based on convolution operation, which increases the overall number of parameters and computational complexity of the network; 2) simply fuse the features of encoder and decoder, ignoring the connection between their spatial locations. In this paper, we rethink the above problem and build a lightweight medical image segmentation network, called SegNetr. Specifically, we introduce a novel SegNetr block that can perform local-global interactions dynamically at any stage and with only linear complexity. At the same time, we design a general information retention skip connection (IRSC) to preserve the spatial location information of encoder features and achieve accurate fusion with the decoder features. We validate the effectiveness of SegNetr on four mainstream medical image segmentation datasets, with 59\% and 76\% fewer parameters and GFLOPs than vanilla U-Net, while achieving segmentation performance comparable to state-of-the-art methods. Notably, the components proposed in this paper can be applied to other U-shaped networks to improve their segmentation performance.

Robotic solutions, in particular robotic arms, are becoming more frequently deployed for close collaboration with humans, for example in manufacturing or domestic care environments. These robotic arms require the user to control several Degrees-of-Freedom (DoFs) to perform tasks, primarily involving grasping and manipulating objects. Standard input devices predominantly have two DoFs, requiring time-consuming and cognitively demanding mode switches to select individual DoFs. Contemporary Adaptive DoF Mapping Controls (ADMCs) have shown to decrease the necessary number of mode switches but were up to now not able to significantly reduce the perceived workload. Users still bear the mental workload of incorporating abstract mode switching into their workflow. We address this by providing feed-forward multimodal feedback using updated recommendations of ADMC, allowing users to visually compare the current and the suggested mapping in real-time. We contrast the effectiveness of two new approaches that a) continuously recommend updated DoF combinations or b) use discrete thresholds between current robot movements and new recommendations. Both are compared in a Virtual Reality (VR) in-person study against a classic control method. Significant results for lowered task completion time, fewer mode switches, and reduced perceived workload conclusively establish that in combination with feedforward, ADMC methods can indeed outperform classic mode switching. A lack of apparent quantitative differences between Continuous and Threshold reveals the importance of user-centered customization options. Including these implications in the development process will improve usability, which is essential for successfully implementing robotic technologies with high user acceptance.

Learning generic high-dimensional tasks is notably hard, as it requires a number of training data exponential in the dimension. Yet, deep convolutional neural networks (CNNs) have shown remarkable success in overcoming this challenge. A popular hypothesis is that learnable tasks are highly structured and that CNNs leverage this structure to build a low-dimensional representation of the data. However, little is known about how much training data they require, and how this number depends on the data structure. This paper answers this question for a simple classification task that seeks to capture relevant aspects of real data: the Random Hierarchy Model. In this model, each of the $n_c$ classes corresponds to $m$ synonymic compositions of high-level features, which are in turn composed of sub-features through an iterative process repeated $L$ times. We find that the number of training data $P^*$ required by deep CNNs to learn this task (i) grows asymptotically as $n_c m^L$, which is only polynomial in the input dimensionality; (ii) coincides with the training set size such that the representation of a trained network becomes invariant to exchanges of synonyms; (iii) corresponds to the number of data at which the correlations between low-level features and classes become detectable. Overall, our results indicate how deep CNNs can overcome the curse of dimensionality by building invariant representations, and provide an estimate of the number of data required to learn a task based on its hierarchically compositional structure.

Deep artificial neural networks achieve surprising generalization abilities that remain poorly understood. In this paper, we present a new approach to analyzing generalization for deep feed-forward ReLU networks that takes advantage of the degree of sparsity that is achieved in the hidden layer activations. By developing a framework that accounts for this reduced effective model size for each input sample, we are able to show fundamental trade-offs between sparsity and generalization. Importantly, our results make no strong assumptions about the degree of sparsity achieved by the model, and it improves over recent norm-based approaches. We illustrate our results numerically, demonstrating non-vacuous bounds when coupled with data-dependent priors in specific settings, even in over-parametrized models.

Variable selection is a procedure to attain the truly important predictors from inputs. Complex nonlinear dependencies and strong coupling pose great challenges for variable selection in high-dimensional data. In addition, real-world applications have increased demands for interpretability of the selection process. A pragmatic approach should not only attain the most predictive covariates, but also provide ample and easy-to-understand grounds for removing certain covariates. In view of these requirements, this paper puts forward an approach for transparent and nonlinear variable selection. In order to transparently decouple information within the input predictors, a three-step heuristic search is designed, via which the input predictors are grouped into four subsets: the relevant to be selected, and the uninformative, redundant, and conditionally independent to be removed. A nonlinear partial correlation coefficient is introduced to better identify the predictors which have nonlinear functional dependence with the response. The proposed method is model-free and the selected subset can be competent input for commonly used predictive models. Experiments demonstrate the superior performance of the proposed method against the state-of-the-art baselines in terms of prediction accuracy and model interpretability.

Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.

One principal approach for illuminating a black-box neural network is feature attribution, i.e. identifying the importance of input features for the network's prediction. The predictive information of features is recently proposed as a proxy for the measure of their importance. So far, the predictive information is only identified for latent features by placing an information bottleneck within the network. We propose a method to identify features with predictive information in the input domain. The method results in fine-grained identification of input features' information and is agnostic to network architecture. The core idea of our method is leveraging a bottleneck on the input that only lets input features associated with predictive latent features pass through. We compare our method with several feature attribution methods using mainstream feature attribution evaluation experiments. The code is publicly available.

In many important graph data processing applications the acquired information includes both node features and observations of the graph topology. Graph neural networks (GNNs) are designed to exploit both sources of evidence but they do not optimally trade-off their utility and integrate them in a manner that is also universal. Here, universality refers to independence on homophily or heterophily graph assumptions. We address these issues by introducing a new Generalized PageRank (GPR) GNN architecture that adaptively learns the GPR weights so as to jointly optimize node feature and topological information extraction, regardless of the extent to which the node labels are homophilic or heterophilic. Learned GPR weights automatically adjust to the node label pattern, irrelevant on the type of initialization, and thereby guarantee excellent learning performance for label patterns that are usually hard to handle. Furthermore, they allow one to avoid feature over-smoothing, a process which renders feature information nondiscriminative, without requiring the network to be shallow. Our accompanying theoretical analysis of the GPR-GNN method is facilitated by novel synthetic benchmark datasets generated by the so-called contextual stochastic block model. We also compare the performance of our GNN architecture with that of several state-of-the-art GNNs on the problem of node-classification, using well-known benchmark homophilic and heterophilic datasets. The results demonstrate that GPR-GNN offers significant performance improvement compared to existing techniques on both synthetic and benchmark data.

Label Propagation (LPA) and Graph Convolutional Neural Networks (GCN) are both message passing algorithms on graphs. Both solve the task of node classification but LPA propagates node label information across the edges of the graph, while GCN propagates and transforms node feature information. However, while conceptually similar, theoretical relation between LPA and GCN has not yet been investigated. Here we study the relationship between LPA and GCN in terms of two aspects: (1) feature/label smoothing where we analyze how the feature/label of one node is spread over its neighbors; And, (2) feature/label influence of how much the initial feature/label of one node influences the final feature/label of another node. Based on our theoretical analysis, we propose an end-to-end model that unifies GCN and LPA for node classification. In our unified model, edge weights are learnable, and the LPA serves as regularization to assist the GCN in learning proper edge weights that lead to improved classification performance. Our model can also be seen as learning attention weights based on node labels, which is more task-oriented than existing feature-based attention models. In a number of experiments on real-world graphs, our model shows superiority over state-of-the-art GCN-based methods in terms of node classification accuracy.

We propose a Bayesian convolutional neural network built upon Bayes by Backprop and elaborate how this known method can serve as the fundamental construct of our novel, reliable variational inference method for convolutional neural networks. First, we show how Bayes by Backprop can be applied to convolutional layers where weights in filters have probability distributions instead of point-estimates; and second, how our proposed framework leads with various network architectures to performances comparable to convolutional neural networks with point-estimates weights. In the past, Bayes by Backprop has been successfully utilised in feedforward and recurrent neural networks, but not in convolutional ones. This work symbolises the extension of the group of Bayesian neural networks which encompasses all three aforementioned types of network architectures now.

北京阿比特科技有限公司