The techniques for 3D indoor scene capturing are widely used, but the meshes produced leave much to be desired. In this paper, we propose "RoomDreamer", which leverages powerful natural language to synthesize a new room with a different style. Unlike existing image synthesis methods, our work addresses the challenge of synthesizing both geometry and texture aligned to the input scene structure and prompt simultaneously. The key insight is that a scene should be treated as a whole, taking into account both scene texture and geometry. The proposed framework consists of two significant components: Geometry Guided Diffusion and Mesh Optimization. Geometry Guided Diffusion for 3D Scene guarantees the consistency of the scene style by applying the 2D prior to the entire scene simultaneously. Mesh Optimization improves the geometry and texture jointly and eliminates the artifacts in the scanned scene. To validate the proposed method, real indoor scenes scanned with smartphones are used for extensive experiments, through which the effectiveness of our method is demonstrated.
High-quality estimation of surface normal can help reduce ambiguity in many geometry understanding problems, such as collision avoidance and occlusion inference. This paper presents a technique for estimating the normal from 3D point clouds and 2D colour images. We have developed a transformer neural network that learns to utilise the hybrid information of visual semantic and 3D geometric data, as well as effective learning strategies. Compared to existing methods, the information fusion of the proposed method is more effective, which is supported by experiments. We have also built a simulation environment of outdoor traffic scenes in a 3D rendering engine to obtain annotated data to train the normal estimator. The model trained on synthetic data is tested on the real scenes in the KITTI dataset. And subsequent tasks built upon the estimated normal directions in the KITTI dataset show that the proposed estimator has advantage over existing methods.
We propose a differentiable rendering algorithm for efficient novel view synthesis. By departing from volume-based representations in favor of a learned point representation, we improve on existing methods more than an order of magnitude in memory and runtime, both in training and inference. The method begins with a uniformly-sampled random point cloud and learns per-point position and view-dependent appearance, using a differentiable splat-based renderer to evolve the model to match a set of input images. Our method is up to 300x faster than NeRF in both training and inference, with only a marginal sacrifice in quality, while using less than 10~MB of memory for a static scene. For dynamic scenes, our method trains two orders of magnitude faster than STNeRF and renders at near interactive rate, while maintaining high image quality and temporal coherence even without imposing any temporal-coherency regularizers.
Deep Implicit Functions (DIFs) have gained popularity in 3D computer vision due to their compactness and continuous representation capabilities. However, addressing dense correspondences and semantic relationships across DIF-encoded shapes remains a critical challenge, limiting their applications in texture transfer and shape analysis. Moreover, recent endeavors in 3D shape generation using DIFs often neglect correspondence and topology preservation. This paper presents HNDF (Hybrid Neural Diffeomorphic Flow), a method that implicitly learns the underlying representation and decomposes intricate dense correspondences into explicitly axis-aligned triplane features. To avoid suboptimal representations trapped in local minima, we propose hybrid supervision that captures both local and global correspondences. Unlike conventional approaches that directly generate new 3D shapes, we further explore the idea of shape generation with deformed template shape via diffeomorphic flows, where the deformation is encoded by the generated triplane features. Leveraging a pre-existing 2D diffusion model, we produce high-quality and diverse 3D diffeomorphic flows through generated triplanes features, ensuring topological consistency with the template shape. Extensive experiments on medical image organ segmentation datasets evaluate the effectiveness of HNDF in 3D shape representation and generation.
Change detection and irregular object extraction in 3D point clouds is a challenging task that is of high importance not only for autonomous navigation but also for updating existing digital twin models of various industrial environments. This article proposes an innovative approach for change detection in 3D point clouds using deep learned place recognition descriptors and irregular object extraction based on voxel-to-point comparison. The proposed method first aligns the bi-temporal point clouds using a map-merging algorithm in order to establish a common coordinate frame. Then, it utilizes deep learning techniques to extract robust and discriminative features from the 3D point cloud scans, which are used to detect changes between consecutive point cloud frames and therefore find the changed areas. Finally, the altered areas are sampled and compared between the two time instances to extract any obstructions that caused the area to change. The proposed method was successfully evaluated in real-world field experiments, where it was able to detect different types of changes in 3D point clouds, such as object or muck-pile addition and displacement, showcasing the effectiveness of the approach. The results of this study demonstrate important implications for various applications, including safety and security monitoring in construction sites, mapping and exploration and suggests potential future research directions in this field.
Neural 3D scene reconstruction methods have achieved impressive performance when reconstructing complex geometry and low-textured regions in indoor scenes. However, these methods heavily rely on 3D data which is costly and time-consuming to obtain in real world. In this paper, we propose a novel neural reconstruction method that reconstructs scenes using sparse depth under the plane constraints without 3D supervision. We introduce a signed distance function field, a color field, and a probability field to represent a scene. We optimize these fields to reconstruct the scene by using differentiable ray marching with accessible 2D images as supervision. We improve the reconstruction quality of complex geometry scene regions with sparse depth obtained by using the geometric constraints. The geometric constraints project 3D points on the surface to similar-looking regions with similar features in different 2D images. We impose the plane constraints to make large planes parallel or vertical to the indoor floor. Both two constraints help reconstruct accurate and smooth geometry structures of the scene. Without 3D supervision, our method achieves competitive performance compared with existing methods that use 3D supervision on the ScanNet dataset.
Polygonal meshes have become the standard for discretely approximating 3D shapes, thanks to their efficiency and high flexibility in capturing non-uniform shapes. This non-uniformity, however, leads to irregularity in the mesh structure, making tasks like segmentation of 3D meshes particularly challenging. Semantic segmentation of 3D mesh has been typically addressed through CNN-based approaches, leading to good accuracy. Recently, transformers have gained enough momentum both in NLP and computer vision fields, achieving performance at least on par with CNN models, supporting the long-sought architecture universalism. Following this trend, we propose a transformer-based method for semantic segmentation of 3D mesh motivated by a better modeling of the graph structure of meshes, by means of global attention mechanisms. In order to address the limitations of standard transformer architectures in modeling relative positions of non-sequential data, as in the case of 3D meshes, as well as in capturing the local context, we perform positional encoding by means the Laplacian eigenvectors of the adjacency matrix, replacing the traditional sinusoidal positional encodings, and by introducing clustering-based features into the self-attention and cross-attention operators. Experimental results, carried out on three sets of the Shape COSEG Dataset, on the human segmentation dataset proposed in Maron et al., 2017 and on the ShapeNet benchmark, show how the proposed approach yields state-of-the-art performance on semantic segmentation of 3D meshes.
Answering complex questions about images is an ambitious goal for machine intelligence, which requires a joint understanding of images, text, and commonsense knowledge, as well as a strong reasoning ability. Recently, multimodal Transformers have made great progress in the task of Visual Commonsense Reasoning (VCR), by jointly understanding visual objects and text tokens through layers of cross-modality attention. However, these approaches do not utilize the rich structure of the scene and the interactions between objects which are essential in answering complex commonsense questions. We propose a Scene Graph Enhanced Image-Text Learning (SGEITL) framework to incorporate visual scene graphs in commonsense reasoning. To exploit the scene graph structure, at the model structure level, we propose a multihop graph transformer for regularizing attention interaction among hops. As for pre-training, a scene-graph-aware pre-training method is proposed to leverage structure knowledge extracted in the visual scene graph. Moreover, we introduce a method to train and generate domain-relevant visual scene graphs using textual annotations in a weakly-supervised manner. Extensive experiments on VCR and other tasks show a significant performance boost compared with the state-of-the-art methods and prove the efficacy of each proposed component.
Semantic reconstruction of indoor scenes refers to both scene understanding and object reconstruction. Existing works either address one part of this problem or focus on independent objects. In this paper, we bridge the gap between understanding and reconstruction, and propose an end-to-end solution to jointly reconstruct room layout, object bounding boxes and meshes from a single image. Instead of separately resolving scene understanding and object reconstruction, our method builds upon a holistic scene context and proposes a coarse-to-fine hierarchy with three components: 1. room layout with camera pose; 2. 3D object bounding boxes; 3. object meshes. We argue that understanding the context of each component can assist the task of parsing the others, which enables joint understanding and reconstruction. The experiments on the SUN RGB-D and Pix3D datasets demonstrate that our method consistently outperforms existing methods in indoor layout estimation, 3D object detection and mesh reconstruction.
This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.
In this paper, we adopt 3D Convolutional Neural Networks to segment volumetric medical images. Although deep neural networks have been proven to be very effective on many 2D vision tasks, it is still challenging to apply them to 3D tasks due to the limited amount of annotated 3D data and limited computational resources. We propose a novel 3D-based coarse-to-fine framework to effectively and efficiently tackle these challenges. The proposed 3D-based framework outperforms the 2D counterpart to a large margin since it can leverage the rich spatial infor- mation along all three axes. We conduct experiments on two datasets which include healthy and pathological pancreases respectively, and achieve the current state-of-the-art in terms of Dice-S{\o}rensen Coefficient (DSC). On the NIH pancreas segmentation dataset, we outperform the previous best by an average of over 2%, and the worst case is improved by 7% to reach almost 70%, which indicates the reliability of our framework in clinical applications.