This work presents BAdam, an optimizer that leverages the block coordinate optimization framework with Adam as the inner solver. BAdam offers a memory efficient approach to the full parameter finetuning of large language models and reduces running time of the backward process thanks to the chain rule property. Experimentally, we apply BAdam to instruction-tune the Llama 2-7B model on the Alpaca-GPT4 dataset using a single RTX3090-24GB GPU. The results indicate that BAdam exhibits superior convergence behavior in comparison to LoRA and LOMO. Furthermore, our downstream performance evaluation of the instruction-tuned models using the MT-bench shows that BAdam modestly surpasses LoRA and more substantially outperforms LOMO. Finally, we compare BAdam with Adam on a medium-sized task, i.e., finetuning RoBERTa-large on the SuperGLUE benchmark. The results demonstrate that BAdam is capable of narrowing the performance gap with Adam. Our code is available at //github.com/Ledzy/BAdam.
Video prediction, predicting future frames from the previous ones, has broad applications such as autonomous driving and weather forecasting. Existing state-of-the-art methods typically focus on extracting either spatial, temporal, or spatiotemporal features from videos. Different feature focuses, resulting from different network architectures, may make the resultant models excel at some video prediction tasks but perform poorly on others. Towards a more generic video prediction solution, we explicitly model these features in a unified encoder-decoder framework and propose a novel simple alternating Mixer (SIAM). The novelty of SIAM lies in the design of dimension alternating mixing (DaMi) blocks, which can model spatial, temporal, and spatiotemporal features through alternating the dimensions of the feature maps. Extensive experimental results demonstrate the superior performance of the proposed SIAM on four benchmark video datasets covering both synthetic and real-world scenarios.
There has been a significant research interest in employing large language models to empower intelligent robots with complex reasoning. Existing work focuses on harnessing their abilities to reason about the histories of their actions and observations. In this paper, we explore a new dimension in which large language models may benefit robotics planning. In particular, we propose Statler, a framework in which large language models are prompted to maintain an estimate of the world state, which are often unobservable, and track its transition as new actions are taken. Our framework then conditions each action on the estimate of the current world state. Despite being conceptually simple, our Statler framework significantly outperforms strong competing methods (e.g., Code-as-Policies) on several robot planning tasks. Additionally, it has the potential advantage of scaling up to more challenging long-horizon planning tasks.
In this work, we introduce Libra, a prototype model with a decoupled vision system on a large language model (LLM). The decoupled vision system decouples inner-modal modeling and cross-modal interaction, yielding unique visual information modeling and effective cross-modal comprehension. Libra is trained through discrete auto-regressive modeling on both vision and language inputs. Specifically, we incorporate a routed visual expert with a cross-modal bridge module into a pretrained LLM to route the vision and language flows during attention computing to enable different attention patterns in inner-modal modeling and cross-modal interaction scenarios. Experimental results demonstrate that the dedicated design of Libra achieves a strong MLLM baseline that rivals existing works in the image-to-text scenario with merely 50 million training data, providing a new perspective for future multimodal foundation models. Code is available at //github.com/YifanXu74/Libra.
In this work, we present Score MUsic Graph (SMUG)-Explain, a framework for generating and visualizing explanations of graph neural networks applied to arbitrary prediction tasks on musical scores. Our system allows the user to visualize the contribution of input notes (and note features) to the network output, directly in the context of the musical score. We provide an interactive interface based on the music notation engraving library Verovio. We showcase the usage of SMUG-Explain on the task of cadence detection in classical music. All code is available on //github.com/manoskary/SMUG-Explain.
Existing Blind image Super-Resolution (BSR) methods focus on estimating either kernel or degradation information, but have long overlooked the essential content details. In this paper, we propose a novel BSR approach, Content-aware Degradation-driven Transformer (CDFormer), to capture both degradation and content representations. However, low-resolution images cannot provide enough content details, and thus we introduce a diffusion-based module $CDFormer_{diff}$ to first learn Content Degradation Prior (CDP) in both low- and high-resolution images, and then approximate the real distribution given only low-resolution information. Moreover, we apply an adaptive SR network $CDFormer_{SR}$ that effectively utilizes CDP to refine features. Compared to previous diffusion-based SR methods, we treat the diffusion model as an estimator that can overcome the limitations of expensive sampling time and excessive diversity. Experiments show that CDFormer can outperform existing methods, establishing a new state-of-the-art performance on various benchmarks under blind settings. Codes and models will be available at \href{//github.com/I2-Multimedia-Lab/CDFormer}{//github.com/I2-Multimedia-Lab/CDFormer}.
BitVMX is a new design for a virtual CPU to optimistically execute arbitrary programs on Bitcoin based on a challenge response game introduced in BitVM. Similar to BitVM1 we create a general-purpose CPU to be verified in Bitcoin script. Our design supports common architectures, such as RISC-V or MIPS. Our main contribution to the state of the art is a design that uses hash chains of program traces, memory mapped registers, and a new challenge-response protocol. We present a new message linking protocol as a means to allow authenticated communication between the participants. This protocol emulates stateful smart contracts by sharing state between transactions. This provides a basis for our verification game which uses a graph of pre-signed transactions to support challenge-response interactions. In case of a dispute, the hash chain of program trace is used with selective pre-signed transactions to locate (via $n$-ary search) and then recover the precise nature of errors in the computation. Unlike BitVM1, our approach does not require the creation of Merkle trees for CPU instructions or memory words. Additionally, it does not rely on signature equivocations. These differences help avoid complexities associated with BitVM1 and make BitVMX a compelling alternative to BitVM2. Our approach is quite flexible, BitVMX can be instantiated to balance transaction cost vs round complexity, prover cost vs verifier cost, and precomputations vs round complexity.
Graph workloads pose a particularly challenging problem for query optimizers. They typically feature large queries made up of entirely many-to-many joins with complex correlations. This puts significant stress on traditional cardinality estimation methods which generally see catastrophic errors when estimating the size of queries with only a handful of joins. To overcome this, we propose COLOR, a framework for subgraph cardinality estimation which applies insights from graph compression theory to produce a compact summary that captures the global topology of the data graph. Further, we identify several key optimizations that enable tractable estimation over this summary even for large query graphs. We then evaluate several designs within this framework and find that they improve accuracy by up to 10$^3$x over all competing methods while maintaining fast inference, a small memory footprint, efficient construction, and graceful degradation under updates.
Feedback-driven optimization, such as traditional machine learning training, is a static process that lacks real-time adaptability of hyperparameters. Tuning solutions for optimization require trial and error paired with checkpointing and schedulers, in many cases feedback from the algorithm is overlooked. Adjusting hyperparameters during optimization usually requires the program to be restarted, wasting utilization and time, while placing unnecessary strain on memory and processors. We present LiveTune, a novel framework allowing real-time parameter adjustment of optimization loops through LiveVariables. Live Variables allow for continuous feedback-driven optimization by storing parameters on designated ports on the system, allowing them to be dynamically adjusted. Extensive evaluations of our framework on standard machine learning training pipelines show saving up to 60 seconds and 5.4 Kilojoules of energy per hyperparameter change. We also show the feasibility and value of LiveTune in a reinforcement learning application where the users change the dynamics of the reward structure while the agent is learning showing 5x improvement over the baseline. Finally, we outline a fully automated workflow to provide end-to-end, unsupervised feedback-driven optimization.
This paper presents Pix2Seq, a simple and generic framework for object detection. Unlike existing approaches that explicitly integrate prior knowledge about the task, we simply cast object detection as a language modeling task conditioned on the observed pixel inputs. Object descriptions (e.g., bounding boxes and class labels) are expressed as sequences of discrete tokens, and we train a neural net to perceive the image and generate the desired sequence. Our approach is based mainly on the intuition that if a neural net knows about where and what the objects are, we just need to teach it how to read them out. Beyond the use of task-specific data augmentations, our approach makes minimal assumptions about the task, yet it achieves competitive results on the challenging COCO dataset, compared to highly specialized and well optimized detection algorithms.
The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.