In recent years, imitation-based driving planners have reported considerable success. However, due to the absence of a standardized benchmark, the effectiveness of various designs remains unclear. The newly released nuPlan addresses this issue by offering a large-scale real-world dataset and a standardized closed-loop benchmark for equitable comparisons. Utilizing this platform, we conduct a comprehensive study on two fundamental yet underexplored aspects of imitation-based planners: the essential features for ego planning and the effective data augmentation techniques to reduce compounding errors. Furthermore, we highlight an imitation gap that has been overlooked by current learning systems. Finally, integrating our findings, we propose a strong baseline model-PlanTF. Our results demonstrate that a well-designed, purely imitation-based planner can achieve highly competitive performance compared to state-of-the-art methods involving hand-crafted rules and exhibit superior generalization capabilities in long-tail cases. Our models and benchmarks are publicly available. Project website //jchengai.github.io/planTF.
Session-based recommendation intends to predict next purchased items based on anonymous behavior sequences. Numerous economic studies have revealed that item price is a key factor influencing user purchase decisions. Unfortunately, existing methods for session-based recommendation only aim at capturing user interest preference, while ignoring user price preference. Actually, there are primarily two challenges preventing us from accessing price preference. Firstly, the price preference is highly associated to various item features (i.e., category and brand), which asks us to mine price preference from heterogeneous information. Secondly, price preference and interest preference are interdependent and collectively determine user choice, necessitating that we jointly consider both price and interest preference for intent modeling. To handle above challenges, we propose a novel approach Bi-Preference Learning Heterogeneous Hypergraph Networks (BiPNet) for session-based recommendation. Specifically, the customized heterogeneous hypergraph networks with a triple-level convolution are devised to capture user price and interest preference from heterogeneous features of items. Besides, we develop a Bi-Preference Learning schema to explore mutual relations between price and interest preference and collectively learn these two preferences under the multi-task learning architecture. Extensive experiments on multiple public datasets confirm the superiority of BiPNet over competitive baselines. Additional research also supports the notion that the price is crucial for the task.
We investigate the optimization target of Contrast-Consistent Search (CCS), which aims to recover the internal representations of truth of a large language model. We present a new loss function that we call the Midpoint-Displacement (MD) loss function. We demonstrate that for a certain hyper-parameter value this MD loss function leads to a prober with very similar weights to CCS. We further show that this hyper-parameter is not optimal and that with a better hyper-parameter the MD loss function attains a higher test accuracy than CCS.
Recent advances in recommender systems have proved the potential of Reinforcement Learning (RL) to handle the dynamic evolution processes between users and recommender systems. However, learning to train an optimal RL agent is generally impractical with commonly sparse user feedback data in the context of recommender systems. To circumvent the lack of interaction of current RL-based recommender systems, we propose to learn a general Model-Agnostic Counterfactual Synthesis (MACS) Policy for counterfactual user interaction data augmentation. The counterfactual synthesis policy aims to synthesise counterfactual states while preserving significant information in the original state relevant to the user's interests, building upon two different training approaches we designed: learning with expert demonstrations and joint training. As a result, the synthesis of each counterfactual data is based on the current recommendation agent's interaction with the environment to adapt to users' dynamic interests. We integrate the proposed policy Deep Deterministic Policy Gradient (DDPG), Soft Actor Critic (SAC) and Twin Delayed DDPG in an adaptive pipeline with a recommendation agent that can generate counterfactual data to improve the performance of recommendation. The empirical results on both online simulation and offline datasets demonstrate the effectiveness and generalisation of our counterfactual synthesis policy and verify that it improves the performance of RL recommendation agents.
Progress in fields of machine learning and adversarial planning has benefited significantly from benchmark domains, from checkers and the classic UCI data sets to Go and Diplomacy. In sequential decision-making, agent evaluation has largely been restricted to few interactions against experts, with the aim to reach some desired level of performance (e.g. beating a human professional player). We propose a benchmark for multiagent learning based on repeated play of the simple game Rock, Paper, Scissors along with a population of forty-three tournament entries, some of which are intentionally sub-optimal. We describe metrics to measure the quality of agents based both on average returns and exploitability. We then show that several RL, online learning, and language model approaches can learn good counter-strategies and generalize well, but ultimately lose to the top-performing bots, creating an opportunity for research in multiagent learning.
In recent years, the rapid growth of online multimedia services, such as e-commerce platforms, has necessitated the development of personalised recommendation approaches that can encode diverse content about each item. Indeed, modern multi-modal recommender systems exploit diverse features obtained from raw images and item descriptions to enhance the recommendation performance. However, the existing multi-modal recommenders primarily depend on the features extracted individually from different media through pre-trained modality-specific encoders, and exhibit only shallow alignments between different modalities - limiting these systems' ability to capture the underlying relationships between the modalities. In this paper, we investigate the usage of large multi-modal encoders within the specific context of recommender systems, as these have previously demonstrated state-of-the-art effectiveness when ranking items across various domains. Specifically, we tailor two state-of-the-art multi-modal encoders (CLIP and VLMo) for recommendation tasks using a range of strategies, including the exploration of pre-trained and fine-tuned encoders, as well as the assessment of the end-to-end training of these encoders. We demonstrate that pre-trained large multi-modal encoders can generate more aligned and effective user/item representations compared to existing modality-specific encoders across three multi-modal recommendation datasets. Furthermore, we show that fine-tuning these large multi-modal encoders with recommendation datasets leads to an enhanced recommendation performance. In terms of different training paradigms, our experiments highlight the essential role of the end-to-end training of large multi-modal encoders in multi-modal recommendation systems.
The new era of technology has brought us to the point where it is convenient for people to share their opinions over an abundance of platforms. These platforms have a provision for the users to express themselves in multiple forms of representations, including text, images, videos, and audio. This, however, makes it difficult for users to obtain all the key information about a topic, making the task of automatic multi-modal summarization (MMS) essential. In this paper, we present a comprehensive survey of the existing research in the area of MMS.
Object detectors usually achieve promising results with the supervision of complete instance annotations. However, their performance is far from satisfactory with sparse instance annotations. Most existing methods for sparsely annotated object detection either re-weight the loss of hard negative samples or convert the unlabeled instances into ignored regions to reduce the interference of false negatives. We argue that these strategies are insufficient since they can at most alleviate the negative effect caused by missing annotations. In this paper, we propose a simple but effective mechanism, called Co-mining, for sparsely annotated object detection. In our Co-mining, two branches of a Siamese network predict the pseudo-label sets for each other. To enhance multi-view learning and better mine unlabeled instances, the original image and corresponding augmented image are used as the inputs of two branches of the Siamese network, respectively. Co-mining can serve as a general training mechanism applied to most of modern object detectors. Experiments are performed on MS COCO dataset with three different sparsely annotated settings using two typical frameworks: anchor-based detector RetinaNet and anchor-free detector FCOS. Experimental results show that our Co-mining with RetinaNet achieves 1.4%~2.1% improvements compared with different baselines and surpasses existing methods under the same sparsely annotated setting.
Recommender systems are widely used in big information-based companies such as Google, Twitter, LinkedIn, and Netflix. A recommender system deals with the problem of information overload by filtering important information fragments according to users' preferences. In light of the increasing success of deep learning, recent studies have proved the benefits of using deep learning in various recommendation tasks. However, most proposed techniques only aim to target individuals, which cannot be efficiently applied in group recommendation. In this paper, we propose a deep learning architecture to solve the group recommendation problem. On the one hand, as different individual preferences in a group necessitate preference trade-offs in making group recommendations, it is essential that the recommendation model can discover substitutes among user behaviors. On the other hand, it has been observed that a user as an individual and as a group member behaves differently. To tackle such problems, we propose using an attention mechanism to capture the impact of each user in a group. Specifically, our model automatically learns the influence weight of each user in a group and recommends items to the group based on its members' weighted preferences. We conduct extensive experiments on four datasets. Our model significantly outperforms baseline methods and shows promising results in applying deep learning to the group recommendation problem.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.
Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.