亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Universal fault-tolerant quantum computers will require the use of efficient protocols to implement encoded operations necessary in the execution of algorithms. In this work, we show how satisfiability modulo theories (SMT) solvers can be used to automate the construction of Clifford circuits with certain fault-tolerance properties and apply our techniques to a fault-tolerant magic state preparation protocol. Part of the protocol requires converting magic states encoded in the color code to magic states encoded in the surface code. Since the teleportation step involves decoding a color code merged with a surface code, we develop a new decoding algorithm applicable to such codes.

相關內容

代碼(Code)是專知網的一個重要知識資料文檔板塊,旨在整理收錄論文源代碼、復現代碼,經典工程代碼等,便于用戶查閱下載使用。

Blockchain has recently attracted the attention of the industry due, in part, to its ability to automate asset transfers. It requires distributed participants to reach a consensus on a block despite the presence of malicious (a.k.a. Byzantine) participants. Malicious participants exploit regularly weaknesses of these blockchain consensus algorithms, with sometimes devastating consequences. In fact, these weaknesses are quite common and are well illustrated by the flaws in the hand-written proofs of existing blockchain consensus protocols [63]. Paradoxically, until now, no blockchain consensus has been holistically verified using model checking. In this paper, we remedy this paradox by model checking for the first time a blockchain consensus used in industry. We propose a holistic approach to verify the consensus algorithm of the Red Belly Blockchain [20], for any number $n$ of processes and any number $f<n/3$ of Byzantine processes. We decompose directly the algorithm pseudocode in two parts -- an inner broadcast algorithm and an outer decision algorithm -- each modelled as a threshold automaton [36], and we formalize their expected properties in linear-time temporal logic. We then automatically check the inner broadcasting algorithm, under a carefully identified fairness assumption. For the verification of the outer algorithm, we simplify the model of the inner algorithm by relying on its checked properties. Doing so, we formally verify not only the safety properties of the Red Belly Blockchain consensus but also its liveness in about 70 seconds.

We establish the following two main results on order types of points in general position in the plane (realizable simple planar order types, realizable uniform acyclic oriented matroids of rank $3$): (a) The number of extreme points in an $n$-point order type, chosen uniformly at random from all such order types, is on average $4+o(1)$. For labeled order types, this number has average $4- \frac{8}{n^2 - n +2}$ and variance at most $3$. (b) The (labeled) order types read off a set of $n$ points sampled independently from the uniform measure on a convex planar domain, smooth or polygonal, or from a Gaussian distribution are concentrated, i.e. such sampling typically encounters only a vanishingly small fraction of all order types of the given size. Result (a) generalizes to arbitrary dimension $d$ for labeled order types with the average number of extreme points $2d+o(1)$ and constant variance. We also discuss to what extent our methods generalize to the abstract setting of uniform acyclic oriented matroids. Moreover, our methods allow to show the following relative of the Erd\H{o}s-Szekeres theorem: for any fixed $k$, as $n \to \infty$, a proportion $1 - O(1/n)$ of the $n$-point simple order types contain a triangle enclosing a convex $k$-chain over an edge. For the unlabeled case in (a), we prove that for any antipodal, finite subset of the $2$-dimensional sphere, the group of orientation preserving bijections is cyclic, dihedral or one of $A_4$, $S_4$ or $A_5$ (and each case is possible). These are the finite subgroups of $SO(3)$ and our proof follows the lines of their characterization by Felix Klein.

Quantum communication technologies will play an important role in quantum information processing in the near future as we network devices together. However, their implementation is still a challenging task due to both loss and gate errors. Quantum error correction codes are one important technique to address this issue. In particular, the Quantum Reed-Solomon codes are known to be quite efficient for quantum communication tasks. The high degree of physical resources required, however, makes such a code difficult to use in practice. A recent technique called quantum multiplexing has been shown to reduce resources by using multiple degrees of freedom of a photon. In this work, we propose a method to decompose multi-controlled gates using fewer $\rm{CX}$ gates via this quantum multiplexing technique. We show that our method can significantly reduce the required number of $\rm{CX}$ gates needed in the encoding circuits for the quantum Reed-Solomon code. Our approach is also applicable to many other quantum error correction codes and quantum algorithms, including Grovers and quantum walks.

Multiple signal classification algorithm (MUSICAL) provides a super-resolution microscopy method. In the previous research, MUSICAL has enabled data-parallelism well on a desktop computer or a Linux-based server. However, the running time needs to be shorter. This paper will develop a new parallel MUSICAL with high efficiency and scalability on a cluster of computers. We achieve the purpose by using the optimal speed of the cluster cores, the latest parallel programming techniques, and the high-performance computing libraries, such as the Intel Threading Building Blocks (TBB), the Intel Math Kernel Library (MKL), and the unified parallel C++ (UPC++) for the cluster of computers. Our experimental results show that the new parallel MUSICAL achieves a speed-up of 240.29x within 10 seconds on the 256-core cluster with an efficiency of 93.86%. Our MUSICAL offers a high possibility for real-life applications to make super-resolution microscopy within seconds.

Voting forms the most important tool for arriving at a decision in any institution. The changing needs of the civilization currently demands a practical yet secure electronic voting system, but any flaw related to the applied voting technology can lead to tampering of the results with the malicious outcomes. Currently, blockchain technology due to its transparent structure forms an emerging area of investigation for the development of voting systems with a far greater security. However, various apprehensions are yet to be conclusively resolved before using blockchain in high stakes elections. Other than this, the blockchain based voting systems are vulnerable to possible attacks by upcoming noisy intermediate scale quantum (NISQ) computer. To circumvent, most of these limitations, in this work, we propose an anonymous voting scheme based on quantum assisted blockchain by enhancing the advantages offered by blockchain with the quantum resources such as quantum random number generators and quantum key distribution. The purposed scheme is shown to satisfy the requirements of a good voting scheme. Further, the voting scheme is auditable and can be implemented using the currently available technology.

Online coding environments can help support computing students gain programming practice at their own pace. Especially informative feedback can be beneficial during such self-guided, independent study phases. This research aims at the identification of feedback types applied by CodingBat, Scratch and Blockly. Tutoring feedback as coined by Susanne Narciss along with the specification of subtypes by Keuning, Jeuring and Heeren constitute the theoretical basis. Accordingly, the five categories of elaborated feedback (knowledge about task requirements, knowledge about concepts, knowledge about mistakes, knowledge about how to proceed, and knowledge about meta-cognition) and their subtypes were utilized for the analysis of available feedback options. The study revealed difficulties in identifying clear-cut boundaries between feedback types, as the offered feedback usually integrates more than one type or subtype. Moreover, currently defined feedback types do not rigorously distinguish individualized and generic feedback. The lack of granularity is also evident in the absence of subtypes relating to the knowledge type of the task. The analysis thus has implications for the future design and investigation of applied tutoring feedback. It encourages future research on feedback types and their implementation in the context of programming exercises to define feedback types that match the demands of novice programmers.

The term "paraphrasing" refers to the process of presenting the sense of an input text in a new way while preserving fluency. Scientific research distribution is gaining traction, allowing both rookie and experienced scientists to participate in their respective fields. As a result, there is now a massive demand for paraphrase tools that may efficiently and effectively assist scientists in modifying statements in order to avoid plagiarism. Natural Language Processing (NLP) is very much important in the realm of the process of document paraphrasing. We analyze and discuss existing studies on paraphrasing in the English language in this paper. Finally, we develop an algorithm to paraphrase any text document or paragraphs using WordNet and Natural Language Tool Kit (NLTK) and maintain "Using Synonyms" techniques to achieve our result. For 250 paragraphs, our algorithm achieved a paraphrase accuracy of 94.8%

In many Internet of Things (IoT) applications, data sensed by an IoT device are continuously sent to the server and monitored against a specification. Since the data often contain sensitive information, and the monitored specification is usually proprietary, both must be kept private from the other end. We propose a protocol to conduct oblivious online monitoring -- online monitoring conducted without revealing the private information of each party to the other -- against a safety LTL specification. In our protocol, we first convert a safety LTL formula into a DFA and conduct online monitoring with the DFA. Based on fully homomorphic encryption (FHE), we propose two online algorithms (Reverse and Block) to run a DFA obliviously. We prove the correctness and security of our entire protocol. We also show the scalability of our algorithms theoretically and empirically. Our case study shows that our algorithms are fast enough to monitor blood glucose levels online, demonstrating our protocol's practical relevance.

Knowledge is a formal way of understanding the world, providing a human-level cognition and intelligence for the next-generation artificial intelligence (AI). One of the representations of knowledge is the structural relations between entities. An effective way to automatically acquire this important knowledge, called Relation Extraction (RE), a sub-task of information extraction, plays a vital role in Natural Language Processing (NLP). Its purpose is to identify semantic relations between entities from natural language text. To date, there are several studies for RE in previous works, which have documented these techniques based on Deep Neural Networks (DNNs) become a prevailing technique in this research. Especially, the supervised and distant supervision methods based on DNNs are the most popular and reliable solutions for RE. This article 1)introduces some general concepts, and further 2)gives a comprehensive overview of DNNs in RE from two points of view: supervised RE, which attempts to improve the standard RE systems, and distant supervision RE, which adopts DNNs to design the sentence encoder and the de-noise method. We further 3)cover some novel methods and describe some recent trends and discuss possible future research directions for this task.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

北京阿比特科技有限公司