亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Growing research in sign language recognition, generation, and translation AI has been accompanied by calls for ethical development of such technologies. While these works are crucial to helping individual researchers do better, there is a notable lack of discussion of systemic biases or analysis of rhetoric that shape the research questions and methods in the field, especially as it remains dominated by hearing non-signing researchers. Therefore, we conduct a systematic review of 101 recent papers in sign language AI. Our analysis identifies significant biases in the current state of sign language AI research, including an overfocus on addressing perceived communication barriers, a lack of use of representative datasets, use of annotations lacking linguistic foundations, and development of methods that build on flawed models. We take the position that the field lacks meaningful input from Deaf stakeholders, and is instead driven by what decisions are the most convenient or perceived as important to hearing researchers. We end with a call to action: the field must make space for Deaf researchers to lead the conversation in sign language AI.

相關內容

Large language models (LLMs) have demonstrated impressive language understanding and generation capabilities, enabling them to answer a wide range of questions across various domains. However, these models are not flawless and often produce responses that contain errors or misinformation. These inaccuracies, commonly referred to as hallucinations, render LLMs unreliable and even unusable in many scenarios. In this paper, our focus is on mitigating the issue of hallucination in LLMs, particularly in the context of question-answering. Instead of attempting to answer all questions, we explore a refusal mechanism that instructs LLMs to refuse to answer challenging questions in order to avoid errors. We then propose a simple yet effective solution called Learn to Refuse (L2R), which incorporates the refusal mechanism to enable LLMs to recognize and refuse to answer questions that they find difficult to address. To achieve this, we utilize a structured knowledge base to represent all the LLM's understanding of the world, enabling it to provide traceable gold knowledge. This knowledge base is separate from the LLM and initially empty. It can be filled with validated knowledge and progressively expanded. When an LLM encounters questions outside its domain, the system recognizes its knowledge scope and determines whether it can answer the question independently. Additionally, we introduce a method for automatically and efficiently expanding the knowledge base of LLMs. Through qualitative and quantitative analysis, we demonstrate that our approach enhances the controllability and reliability of LLMs.

In acupuncture therapy, the accurate location of acupoints is essential for its effectiveness. The advanced language understanding capabilities of large language models (LLMs) like Generative Pre-trained Transformers (GPT) present a significant opportunity for extracting relations related to acupoint locations from textual knowledge sources. This study aims to compare the performance of GPT with traditional deep learning models (Long Short-Term Memory (LSTM) and Bidirectional Encoder Representations from Transformers for Biomedical Text Mining (BioBERT)) in extracting acupoint-related location relations and assess the impact of pretraining and fine-tuning on GPT's performance. We utilized the World Health Organization Standard Acupuncture Point Locations in the Western Pacific Region (WHO Standard) as our corpus, which consists of descriptions of 361 acupoints. Five types of relations ('direction_of,' 'distance_of,' 'part_of,' 'near_acupoint,' and 'located_near') (n= 3,174) between acupoints were annotated. Five models were compared: BioBERT, LSTM, pre-trained GPT-3.5, fine-tuned GPT-3.5, as well as pre-trained GPT-4. Performance metrics included micro-average exact match precision, recall, and F1 scores. Our results demonstrate that fine-tuned GPT-3.5 consistently outperformed other models in F1 scores across all relation types. Overall, it achieved the highest micro-average F1 score of 0.92. This study underscores the effectiveness of LLMs like GPT in extracting relations related to acupoint locations, with implications for accurately modeling acupuncture knowledge and promoting standard implementation in acupuncture training and practice. The findings also contribute to advancing informatics applications in traditional and complementary medicine, showcasing the potential of LLMs in natural language processing.

We analyze how well pre-trained large language models (e.g., Llama2, GPT-4, Claude 3, etc) can do linear and non-linear regression when given in-context examples, without any additional training or gradient updates. Our findings reveal that several large language models (e.g., GPT-4, Claude 3) are able to perform regression tasks with a performance rivaling (or even outperforming) that of traditional supervised methods such as Random Forest, Bagging, or Gradient Boosting. For example, on the challenging Friedman #2 regression dataset, Claude 3 outperforms many supervised methods such as AdaBoost, SVM, Random Forest, KNN, or Gradient Boosting. We then investigate how well the performance of large language models scales with the number of in-context exemplars. We borrow from the notion of regret from online learning and empirically show that LLMs are capable of obtaining a sub-linear regret.

Large language models (LLMs), trained on vast datasets, can carry biases that manifest in various forms, from overt discrimination to implicit stereotypes. One facet of bias is performance disparities in LLMs, often harming underprivileged groups, such as racial minorities. A common approach to quantifying bias is to use template-based bias probes, which explicitly state group membership (e.g. White) and evaluate if the outcome of a task, sentiment analysis for instance, is invariant to the change of group membership (e.g. change White race to Black). This approach is widely used in bias quantification. However, in this work, we find evidence of an unexpectedly overlooked consequence of using template-based probes for LLM bias quantification. We find that in doing so, text examples associated with White ethnicities appear to be classified as exhibiting negative sentiment at elevated rates. We hypothesize that the scenario arises artificially through a mismatch between the pre-training text of LLMs and the templates used to measure bias through reporting bias, unstated norms that imply group membership without explicit statement. Our finding highlights the potential misleading impact of varying group membership through explicit mention in bias quantification

This study aims to address the pervasive challenge of quantifying uncertainty in large language models (LLMs) without logit-access. Conformal Prediction (CP), known for its model-agnostic and distribution-free features, is a desired approach for various LLMs and data distributions. However, existing CP methods for LLMs typically assume access to the logits, which are unavailable for some API-only LLMs. In addition, logits are known to be miscalibrated, potentially leading to degraded CP performance. To tackle these challenges, we introduce a novel CP method that (1) is tailored for API-only LLMs without logit-access; (2) minimizes the size of prediction sets; and (3) ensures a statistical guarantee of the user-defined coverage. The core idea of this approach is to formulate nonconformity measures using both coarse-grained (i.e., sample frequency) and fine-grained uncertainty notions (e.g., semantic similarity). Experimental results on both close-ended and open-ended Question Answering tasks show our approach can mostly outperform the logit-based CP baselines.

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). Domain specification techniques are key to make large language models disruptive in many applications. Specifically, to solve these hurdles, there has been a notable increase in research and practices conducted in recent years on the domain specialization of LLMs. This emerging field of study, with its substantial potential for impact, necessitates a comprehensive and systematic review to better summarize and guide ongoing work in this area. In this article, we present a comprehensive survey on domain specification techniques for large language models, an emerging direction critical for large language model applications. First, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. Second, we present an extensive taxonomy of critical application domains that can benefit dramatically from specialized LLMs, discussing their practical significance and open challenges. Last, we offer our insights into the current research status and future trends in this area.

Large language models (LLMs) have shown their capabilities in understanding contextual and semantic information regarding knowledge of instance appearances. In this paper, we introduce a novel approach to utilize the strengths of LLMs in understanding contextual appearance variations and to leverage this knowledge into a vision model (here, pedestrian detection). While pedestrian detection is considered one of the crucial tasks directly related to our safety (e.g., intelligent driving systems), it is challenging because of varying appearances and poses in diverse scenes. Therefore, we propose to formulate language-derived appearance elements and incorporate them with visual cues in pedestrian detection. To this end, we establish a description corpus that includes numerous narratives describing various appearances of pedestrians and other instances. By feeding them through an LLM, we extract appearance knowledge sets that contain the representations of appearance variations. Subsequently, we perform a task-prompting process to obtain appearance elements which are guided representative appearance knowledge relevant to a downstream pedestrian detection task. The obtained knowledge elements are adaptable to various detection frameworks, so that we can provide plentiful appearance information by integrating the language-derived appearance elements with visual cues within a detector. Through comprehensive experiments with various pedestrian detectors, we verify the adaptability and effectiveness of our method showing noticeable performance gains and achieving state-of-the-art detection performance on two public pedestrian detection benchmarks (i.e., CrowdHuman and WiderPedestrian).

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

北京阿比特科技有限公司