Using synthesized images to boost the performance of perception models is a long-standing research challenge in computer vision. It becomes more eminent in visual-centric autonomous driving systems with multi-view cameras as some long-tail scenarios can never be collected. Guided by the BEV segmentation layouts, the existing generative networks seem to synthesize photo-realistic street-view images when evaluated solely on scene-level metrics. However, once zoom-in, they usually fail to produce accurate foreground and background details such as heading. To this end, we propose a two-stage generative method, dubbed BEVControl, that can generate accurate foreground and background contents. In contrast to segmentation-like input, it also supports sketch style input, which is more flexible for humans to edit. In addition, we propose a comprehensive multi-level evaluation protocol to fairly compare the quality of the generated scene, foreground object, and background geometry. Our extensive experiments show that our BEVControl surpasses the state-of-the-art method, BEVGen, by a significant margin, from 5.89 to 26.80 on foreground segmentation mIoU. In addition, we show that using images generated by BEVControl to train the downstream perception model, it achieves on average 1.29 improvement in NDS score.
Strictly serializable datastores greatly simplify the development of correct applications by providing strong consistency guarantees. However, existing techniques pay unnecessary costs for naturally consistent transactions, which arrive at servers in an order that is already strictly serializable. We find these transactions are prevalent in datacenter workloads. We exploit this natural arrival order by executing transaction requests with minimal costs while optimistically assuming they are naturally consistent, and then leverage a timestamp-based technique to efficiently verify if the execution is indeed consistent. In the process of designing such a timestamp-based technique, we identify a fundamental pitfall in relying on timestamps to provide strict serializability, and name it the timestamp-inversion pitfall. We find timestamp-inversion has affected several existing works. We present Natural Concurrency Control (NCC), a new concurrency control technique that guarantees strict serializability and ensures minimal costs -- i.e., one-round latency, lock-free, and non-blocking execution -- in the best (and common) case by leveraging natural consistency. NCC is enabled by three key components: non-blocking execution, decoupled response control, and timestamp-based consistency check. NCC avoids timestamp-inversion with a new technique: response timing control, and proposes two optimization techniques, asynchrony-aware timestamps and smart retry, to reduce false aborts. Moreover, NCC designs a specialized protocol for read-only transactions, which is the first to achieve the optimal best-case performance while ensuring strict serializability, without relying on synchronized clocks. Our evaluation shows that NCC outperforms state-of-the-art solutions by an order of magnitude on many workloads.
This paper tackles the challenging task of evaluating socially situated conversational robots and presents a novel objective evaluation approach that relies on multimodal user behaviors. In this study, our main focus is on assessing the human-likeness of the robot as the primary evaluation metric. While previous research often relied on subjective evaluations from users, our approach aims to evaluate the robot's human-likeness based on observable user behaviors indirectly, thus enhancing objectivity and reproducibility. To begin, we created an annotated dataset of human-likeness scores, utilizing user behaviors found in an attentive listening dialogue corpus. We then conducted an analysis to determine the correlation between multimodal user behaviors and human-likeness scores, demonstrating the feasibility of our proposed behavior-based evaluation method.
The increased attention to regulating the outputs of deep generative models, driven by growing concerns about privacy and regulatory compliance, has highlighted the need for effective control over these models. This necessity arises from instances where generative models produce outputs containing undesirable, offensive, or potentially harmful content. To tackle this challenge, the concept of machine unlearning has emerged, aiming to forget specific learned information or to erase the influence of undesired data subsets from a trained model. The objective of this work is to prevent the generation of outputs containing undesired features from a pre-trained GAN where the underlying training data set is inaccessible. Our approach is inspired by a crucial observation: the parameter space of GANs exhibits meaningful directions that can be leveraged to suppress specific undesired features. However, such directions usually result in the degradation of the quality of generated samples. Our proposed method, known as 'Adapt-then-Unlearn,' excels at unlearning such undesirable features while also maintaining the quality of generated samples. This method unfolds in two stages: in the initial stage, we adapt the pre-trained GAN using negative samples provided by the user, while in the subsequent stage, we focus on unlearning the undesired feature. During the latter phase, we train the pre-trained GAN using positive samples, incorporating a repulsion regularizer. This regularizer encourages the model's parameters to be away from the parameters associated with the adapted model from the first stage while also maintaining the quality of generated samples. To the best of our knowledge, our approach stands as first method addressing unlearning in GANs. We validate the effectiveness of our method through comprehensive experiments.
We propose OptCtrlPoints, a data-driven framework designed to identify the optimal sparse set of control points for reproducing target shapes using biharmonic 3D shape deformation. Control-point-based 3D deformation methods are widely utilized for interactive shape editing, and their usability is enhanced when the control points are sparse yet strategically distributed across the shape. With this objective in mind, we introduce a data-driven approach that can determine the most suitable set of control points, assuming that we have a given set of possible shape variations. The challenges associated with this task primarily stem from the computationally demanding nature of the problem. Two main factors contribute to this complexity: solving a large linear system for the biharmonic weight computation and addressing the combinatorial problem of finding the optimal subset of mesh vertices. To overcome these challenges, we propose a reformulation of the biharmonic computation that reduces the matrix size, making it dependent on the number of control points rather than the number of vertices. Additionally, we present an efficient search algorithm that significantly reduces the time complexity while still delivering a nearly optimal solution. Experiments on SMPL, SMAL, and DeformingThings4D datasets demonstrate the efficacy of our method. Our control points achieve better template-to-target fit than FPS, random search, and neural-network-based prediction. We also highlight the significant reduction in computation time from days to approximately 3 minutes.
Time-series forecasting models often encounter abrupt changes in a given period of time which generally occur due to unexpected or unknown events. Despite their scarce occurrences in the training set, abrupt changes incur loss that significantly contributes to the total loss. Therefore, they act as noisy training samples and prevent the model from learning generalizable patterns, namely the normal states. Based on our findings, we propose a reweighting framework that down-weights the losses incurred by abrupt changes and up-weights those by normal states. For the reweighting framework, we first define a measurement termed Local Discrepancy (LD) which measures the degree of abruptness of a change in a given period of time. Since a training set is mostly composed of normal states, we then consider how frequently the temporal changes appear in the training set based on LD. Our reweighting framework is applicable to existing time-series forecasting models regardless of the architectures. Through extensive experiments on 12 time-series forecasting models over eight datasets with various in-output sequence lengths, we demonstrate that applying our reweighting framework reduces MSE by 10.1% on average and by up to 18.6% in the state-of-the-art model.
While image data starts to enjoy the simple-but-effective self-supervised learning scheme built upon masking and self-reconstruction objective thanks to the introduction of tokenization procedure and vision transformer backbone, convolutional neural networks as another important and widely-adopted architecture for image data, though having contrastive-learning techniques to drive the self-supervised learning, still face the difficulty of leveraging such straightforward and general masking operation to benefit their learning process significantly. In this work, we aim to alleviate the burden of including masking operation into the contrastive-learning framework for convolutional neural networks as an extra augmentation method. In addition to the additive but unwanted edges (between masked and unmasked regions) as well as other adverse effects caused by the masking operations for ConvNets, which have been discussed by prior works, we particularly identify the potential problem where for one view in a contrastive sample-pair the randomly-sampled masking regions could be overly concentrated on important/salient objects thus resulting in misleading contrastiveness to the other view. To this end, we propose to explicitly take the saliency constraint into consideration in which the masked regions are more evenly distributed among the foreground and background for realizing the masking-based augmentation. Moreover, we introduce hard negative samples by masking larger regions of salient patches in an input image. Extensive experiments conducted on various datasets, contrastive learning mechanisms, and downstream tasks well verify the efficacy as well as the superior performance of our proposed method with respect to several state-of-the-art baselines.
To integrate action recognition methods into autonomous robotic systems, it is crucial to consider adverse situations involving target occlusions. Such a scenario, despite its practical relevance, is rarely addressed in existing self-supervised skeleton-based action recognition methods. To empower robots with the capacity to address occlusion, we propose a simple and effective method. We first pre-train using occluded skeleton sequences, then use k-means clustering (KMeans) on sequence embeddings to group semantically similar samples. Next, we employ K-nearest-neighbor (KNN) to fill in missing skeleton data based on the closest sample neighbors. Imputing incomplete skeleton sequences to create relatively complete sequences as input provides significant benefits to existing skeleton-based self-supervised models. Meanwhile, building on the state-of-the-art Partial Spatio-Temporal Learning (PSTL), we introduce an Occluded Partial Spatio-Temporal Learning (OPSTL) framework. This enhancement utilizes Adaptive Spatial Masking (ASM) for better use of high-quality, intact skeletons. The effectiveness of our imputation methods is verified on the challenging occluded versions of the NTURGB+D 60 and NTURGB+D 120. The source code will be made publicly available at //github.com/cyfml/OPSTL.
We present ExBluRF, a novel view synthesis method for extreme motion blurred images based on efficient radiance fields optimization. Our approach consists of two main components: 6-DOF camera trajectory-based motion blur formulation and voxel-based radiance fields. From extremely blurred images, we optimize the sharp radiance fields by jointly estimating the camera trajectories that generate the blurry images. In training, multiple rays along the camera trajectory are accumulated to reconstruct single blurry color, which is equivalent to the physical motion blur operation. We minimize the photo-consistency loss on blurred image space and obtain the sharp radiance fields with camera trajectories that explain the blur of all images. The joint optimization on the blurred image space demands painfully increasing computation and resources proportional to the blur size. Our method solves this problem by replacing the MLP-based framework to low-dimensional 6-DOF camera poses and voxel-based radiance fields. Compared with the existing works, our approach restores much sharper 3D scenes from challenging motion blurred views with the order of 10 times less training time and GPU memory consumption.
Emerging real-time multi-model ML (RTMM) workloads such as AR/VR and drone control involve dynamic behaviors in various granularity; task, model, and layers within a model. Such dynamic behaviors introduce new challenges to the system software in an ML system since the overall system load is not completely predictable, unlike traditional ML workloads. In addition, RTMM workloads require real-time processing, involve highly heterogeneous models, and target resource-constrained devices. Under such circumstances, developing an effective scheduler gains more importance to better utilize underlying hardware considering the unique characteristics of RTMM workloads. Therefore, we propose a new scheduler, DREAM, which effectively handles various dynamicity in RTMM workloads targeting multi-accelerator systems. DREAM quantifies the unique requirements for RTMM workloads and utilizes the quantified scores to drive scheduling decisions, considering the current system load and other inference jobs on different models and input frames. DREAM utilizes tunable parameters that provide fast and effective adaptivity to dynamic workload changes. In our evaluation of five scenarios of RTMM workload, DREAM reduces the overall UXCost, which is an equivalent metric of the energy-delay product (EDP) for RTMM defined in the paper, by 32.2% and 50.0% in the geometric mean (up to 80.8% and 97.6%) compared to state-of-the-art baselines, which shows the efficacy of our scheduling methodology.
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.