Due to the lack of large-scale text-3D correspondence data, recent text-to-3D generation works mainly rely on utilizing 2D diffusion models for synthesizing 3D data. Since diffusion-based methods typically require significant optimization time for both training and inference, the use of GAN-based models would still be desirable for fast 3D generation. In this work, we propose Triplane Attention for text-guided 3D generation (TPA3D), an end-to-end trainable GAN-based deep learning model for fast text-to-3D generation. With only 3D shape data and their rendered 2D images observed during training, our TPA3D is designed to retrieve detailed visual descriptions for synthesizing the corresponding 3D mesh data. This is achieved by the proposed attention mechanisms on the extracted sentence and word-level text features. In our experiments, we show that TPA3D generates high-quality 3D textured shapes aligned with fine-grained descriptions, while impressive computation efficiency can be observed.
While Text-to-Image (T2I) diffusion models excel at generating visually appealing images of individual instances, they struggle to accurately position and control the features generation of multiple instances. The Layout-to-Image (L2I) task was introduced to address the positioning challenges by incorporating bounding boxes as spatial control signals, but it still falls short in generating precise instance features. In response, we propose the Instance Feature Generation (IFG) task, which aims to ensure both positional accuracy and feature fidelity in generated instances. To address the IFG task, we introduce the Instance Feature Adapter (IFAdapter). The IFAdapter enhances feature depiction by incorporating additional appearance tokens and utilizing an Instance Semantic Map to align instance-level features with spatial locations. The IFAdapter guides the diffusion process as a plug-and-play module, making it adaptable to various community models. For evaluation, we contribute an IFG benchmark and develop a verification pipeline to objectively compare models' abilities to generate instances with accurate positioning and features. Experimental results demonstrate that IFAdapter outperforms other models in both quantitative and qualitative evaluations.
Large language models (LLMs) often fail to synthesize information from their context to generate an accurate response. This renders them unreliable in knowledge intensive settings where reliability of the output is key. A critical component for reliable LLMs is the integration of a robust fact-checking system that can detect hallucinations across various formats. While several open-access fact-checking models are available, their functionality is often limited to specific tasks, such as grounded question-answering or entailment verification, and they perform less effectively in conversational settings. On the other hand, closed-access models like GPT-4 and Claude offer greater flexibility across different contexts, including grounded dialogue verification, but are hindered by high costs and latency. In this work, we introduce VERITAS, a family of hallucination detection models designed to operate flexibly across diverse contexts while minimizing latency and costs. VERITAS achieves state-of-the-art results considering average performance on all major hallucination detection benchmarks, with $10\%$ increase in average performance when compared to similar-sized models and get close to the performance of GPT4 turbo with LLM-as-a-judge setting.
We introduce EMMA, an End-to-end Multimodal Model for Autonomous driving. Built on a multi-modal large language model foundation, EMMA directly maps raw camera sensor data into various driving-specific outputs, including planner trajectories, perception objects, and road graph elements. EMMA maximizes the utility of world knowledge from the pre-trained large language models, by representing all non-sensor inputs (e.g. navigation instructions and ego vehicle status) and outputs (e.g. trajectories and 3D locations) as natural language text. This approach allows EMMA to jointly process various driving tasks in a unified language space, and generate the outputs for each task using task-specific prompts. Empirically, we demonstrate EMMA's effectiveness by achieving state-of-the-art performance in motion planning on nuScenes as well as competitive results on the Waymo Open Motion Dataset (WOMD). EMMA also yields competitive results for camera-primary 3D object detection on the Waymo Open Dataset (WOD). We show that co-training EMMA with planner trajectories, object detection, and road graph tasks yields improvements across all three domains, highlighting EMMA's potential as a generalist model for autonomous driving applications. However, EMMA also exhibits certain limitations: it can process only a small amount of image frames, does not incorporate accurate 3D sensing modalities like LiDAR or radar and is computationally expensive. We hope that our results will inspire further research to mitigate these issues and to further evolve the state of the art in autonomous driving model architectures.
Entity alignment (EA) refers to the task of linking entities in different knowledge graphs (KGs). Existing EA methods rely heavily on structural isomorphism. However, in real-world KGs, aligned entities usually have non-isomorphic neighborhood structures, which paralyses the application of these structure-dependent methods. In this paper, we investigate and tackle the problem of entity alignment between heterogeneous KGs. First, we propose two new benchmarks to closely simulate real-world EA scenarios of heterogeneity. Then we conduct extensive experiments to evaluate the performance of representative EA methods on the new benchmarks. Finally, we propose a simple and effective entity alignment framework called Attr-Int, in which innovative attribute information interaction methods can be seamlessly integrated with any embedding encoder for entity alignment, improving the performance of existing entity alignment techniques. Experiments demonstrate that our framework outperforms the state-of-the-art approaches on two new benchmarks.
In the era of the Internet of Things (IoT) and data sharing, users frequently upload their personal information to enterprise databases to enjoy enhanced service experiences provided by various online services. However, the widespread presence of system vulnerabilities, remote network intrusions, and insider threats significantly increases the exposure of private enterprise data on the internet. If such data is stolen or leaked by attackers, it can result in severe asset losses and business operation disruptions. To address these challenges, this paper proposes a novel threat detection framework, TabITD. This framework integrates Intrusion Detection Systems (IDS) with User and Entity Behavior Analytics (UEBA) strategies to form a collaborative detection system that bridges the gaps in existing systems' capabilities. It effectively addresses the blurred boundaries between external and insider threats caused by the diversification of attack methods, thereby enhancing the model's learning ability and overall detection performance. Moreover, the proposed method leverages the TabNet architecture, which employs a sparse attention feature selection mechanism that allows TabNet to select the most relevant features at each decision step, thereby improving the detection of rare-class attacks. We evaluated our proposed solution on two different datasets, achieving average accuracies of 96.71% and 97.25%, respectively. The results demonstrate that this approach can effectively detect malicious behaviors such as masquerade attacks and external threats, significantly enhancing network security defenses and the efficiency of network attack detection.
Spurred by the demand for interpretable models, research on eXplainable AI for language technologies has experienced significant growth, with feature attribution methods emerging as a cornerstone of this progress. While prior work in NLP explored such methods for classification tasks and textual applications, explainability intersecting generation and speech is lagging, with existing techniques failing to account for the autoregressive nature of state-of-the-art models and to provide fine-grained, phonetically meaningful explanations. We address this gap by introducing Spectrogram Perturbation for Explainable Speech-to-text Generation (SPES), a feature attribution technique applicable to sequence generation tasks with autoregressive models. SPES provides explanations for each predicted token based on both the input spectrogram and the previously generated tokens. Extensive evaluation on speech recognition and translation demonstrates that SPES generates explanations that are faithful and plausible to humans.
We present ConceptFactory, a novel scope to facilitate more efficient annotation of 3D object knowledge by recognizing 3D objects through generalized concepts (i.e. object conceptualization), aiming at promoting machine intelligence to learn comprehensive object knowledge from both vision and robotics aspects. This idea originates from the findings in human cognition research that the perceptual recognition of objects can be explained as a process of arranging generalized geometric components (e.g. cuboids and cylinders). ConceptFactory consists of two critical parts: i) ConceptFactory Suite, a unified toolbox that adopts Standard Concept Template Library (STL-C) to drive a web-based platform for object conceptualization, and ii) ConceptFactory Asset, a large collection of conceptualized objects acquired using ConceptFactory suite. Our approach enables researchers to effortlessly acquire or customize extensive varieties of object knowledge to comprehensively study different object understanding tasks. We validate our idea on a wide range of benchmark tasks from both vision and robotics aspects with state-of-the-art algorithms, demonstrating the high quality and versatility of annotations provided by our approach. Our website is available at //apeirony.github.io/ConceptFactory.
This paper presents a new open-source high-fidelity dataset for Machine Learning (ML) containing 355 geometric variants of the Windsor body, to help the development and testing of ML surrogate models for external automotive aerodynamics. Each Computational Fluid Dynamics (CFD) simulation was run with a GPU-native high-fidelity Wall-Modeled Large-Eddy Simulations (WMLES) using a Cartesian immersed-boundary method using more than 280M cells to ensure the greatest possible accuracy. The dataset contains geometry variants that exhibits a wide range of flow characteristics that are representative of those observed on road-cars. The dataset itself contains the 3D time-averaged volume & boundary data as well as the geometry and force & moment coefficients. This paper discusses the validation of the underlying CFD methods as well as contents and structure of the dataset. To the authors knowledge, this represents the first, large-scale high-fidelity CFD dataset for the Windsor body with a permissive open-source license (CC-BY-SA).
This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.