亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the use of extreme learning machines (ELM) for computational partial differential equations (PDE). In ELM the hidden-layer coefficients in the neural network are assigned to random values generated on $[-R_m,R_m]$ and fixed, where $R_m$ is a user-provided constant, and the output-layer coefficients are trained by a linear or nonlinear least squares computation. We present a method for computing the optimal value of $R_m$ based on the differential evolution algorithm. The presented method enables us to illuminate the characteristics of the optimal $R_m$ for two types of ELM configurations: (i) Single-Rm-ELM, in which a single $R_m$ is used for generating the random coefficients in all the hidden layers, and (ii) Multi-Rm-ELM, in which multiple $R_m$ constants are involved with each used for generating the random coefficients of a different hidden layer. We adopt the optimal $R_m$ from this method and also incorporate other improvements into the ELM implementation. In particular, here we compute all the differential operators involving the output fields of the last hidden layer by a forward-mode auto-differentiation, as opposed to the reverse-mode auto-differentiation in a previous work. These improvements significantly reduce the network training time and enhance the ELM performance. We systematically compare the computational performance of the current improved ELM with that of the finite element method (FEM), both the classical second-order FEM and the high-order FEM with Lagrange elements of higher degrees, for solving a number of linear and nonlinear PDEs. It is shown that the current improved ELM far outperforms the classical FEM. Its computational performance is comparable to that of the high-order FEM for smaller problem sizes, and for larger problem sizes the ELM markedly outperforms the high-order FEM.

相關內容

In this paper we develop efficient first-order algorithms for the generalized trust-region subproblem (GTRS), which has applications in signal processing, compressed sensing, and engineering. Although the GTRS, as stated, is nonlinear and nonconvex, it is well-known that objective value exactness holds for its SDP relaxation under a Slater condition. While polynomial-time SDP-based algorithms exist for the GTRS, their relatively large computational complexity has motivated and spurred the development of custom approaches for solving the GTRS. In particular, recent work in this direction has developed first-order methods for the GTRS whose running times are linear in the sparsity (the number of nonzero entries) of the input data. In contrast to these algorithms, in this paper we develop algorithms for computing $\epsilon$-approximate solutions to the GTRS whose running times are linear in both the input sparsity and the precision $\log(1/\epsilon)$ whenever a regularity parameter is positive. We complement our theoretical guarantees with numerical experiments comparing our approach against algorithms from the literature. Our numerical experiments highlight that our new algorithms significantly outperform prior state-of-the-art algorithms on sparse large-scale instances.

We study the problem of online tree exploration by a deterministic mobile agent. Our main objective is to establish what features of the model of the mobile agent and the environment allow linear exploration time. We study agents that, upon entering to a node, do not receive as input the edge via which they entered. In such a model, deterministic memoryless exploration is infeasible, hence the agent needs to be allowed to use some memory. The memory can be located at the agent or at each node. The existing lower bounds show that if the memory is either only at the agent or only at the nodes, then the exploration needs superlinear time. We show that tree exploration in dual-memory model, with constant memory at the agent and logarithmic at each node is possible in linear time when one of two additional features is present: fixed initial state of the memory at each node (so called clean memory) or a single movable token. We present two algorithms working in linear time for arbitrary trees in these two models. On the other hand, in our lower bound we show that if the agent has a single bit of memory and one bit is present at each node, then exploration may require quadratic time on paths, if the initial memory at nodes could be set arbitrarily (so called dirty memory). This shows that having clean node memory or a token allows linear exploration of trees in the model with two types of memory, but having neither of those features may lead to quadratic exploration time even on a simple path.

In this work, we consider the performance of using a quantum algorithm to predict a result for a binary classification problem if a machine learning model is an ensemble from any simple classifiers. Such an approach is faster than classical prediction and uses quantum and classical computing, but it is based on a probabilistic algorithm. Let $N$ be a number of classifiers from an ensemble model and $O(T)$ be the running time of prediction on one classifier. In classical case, an ensemble model gets answers from each classifier and "averages" the result. The running time in classical case is $O\left( N \cdot T \right)$. We propose an algorithm which works in $O\left(\sqrt{N} \cdot T\right)$.

The combinatorial diameter $\operatorname{diam}(P)$ of a polytope $P$ is the maximum shortest path distance between any pair of vertices. In this paper, we provide upper and lower bounds on the combinatorial diameter of a random "spherical" polytope, which is tight to within one factor of dimension when the number of inequalities is large compared to the dimension. More precisely, for an $n$-dimensional polytope $P$ defined by the intersection of $m$ i.i.d.\ half-spaces whose normals are chosen uniformly from the sphere, we show that $\operatorname{diam}(P)$ is $\Omega(n m^{\frac{1}{n-1}})$ and $O(n^2 m^{\frac{1}{n-1}} + n^5 4^n)$ with high probability when $m \geq 2^{\Omega(n)}$. For the upper bound, we first prove that the number of vertices in any fixed two dimensional projection sharply concentrates around its expectation when $m$ is large, where we rely on the $\Theta(n^2 m^{\frac{1}{n-1}})$ bound on the expectation due to Borgwardt [Math. Oper. Res., 1999]. To obtain the diameter upper bound, we stitch these ``shadows paths'' together over a suitable net using worst-case diameter bounds to connect vertices to the nearest shadow. For the lower bound, we first reduce to lower bounding the diameter of the dual polytope $P^\circ$, corresponding to a random convex hull, by showing the relation $\operatorname{diam}(P) \geq (n-1)(\operatorname{diam}(P^\circ)-2)$. We then prove that the shortest path between any ``nearly'' antipodal pair vertices of $P^\circ$ has length $\Omega(m^{\frac{1}{n-1}})$.

Tree ensemble methods such as random forests [Breiman, 2001] are very popular to handle high-dimensional tabular data sets, notably because of their good predictive accuracy. However, when machine learning is used for decision-making problems, settling for the best predictive procedures may not be reasonable since enlightened decisions require an in-depth comprehension of the algorithm prediction process. Unfortunately, random forests are not intrinsically interpretable since their prediction results from averaging several hundreds of decision trees. A classic approach to gain knowledge on this so-called black-box algorithm is to compute variable importances, that are employed to assess the predictive impact of each input variable. Variable importances are then used to rank or select variables and thus play a great role in data analysis. Nevertheless, there is no justification to use random forest variable importances in such way: we do not even know what these quantities estimate. In this paper, we analyze one of the two well-known random forest variable importances, the Mean Decrease Impurity (MDI). We prove that if input variables are independent and in absence of interactions, MDI provides a variance decomposition of the output, where the contribution of each variable is clearly identified. We also study models exhibiting dependence between input variables or interaction, for which the variable importance is intrinsically ill-defined. Our analysis shows that there may exist some benefits to use a forest compared to a single tree.

A fundamental problem in numerical analysis and approximation theory is approximating smooth functions by polynomials. A much harder version under recent consideration is to enforce bounds constraints on the approximating polynomial. In this paper, we consider the problem of approximating functions by polynomials whose Bernstein coefficients with respect to a given degree satisfy such bounds, which implies such bounds on the approximant. We frame the problem as an inequality-constrained optimization problem and give an algorithm for finding the Bernstein coefficients of the exact solution. Additionally, our method can be modified slightly to include equality constraints such as mass preservation. It also extends naturally to multivariate polynomials over a simplex.

The rapid recent progress in machine learning (ML) has raised a number of scientific questions that challenge the longstanding dogma of the field. One of the most important riddles is the good empirical generalization of overparameterized models. Overparameterized models are excessively complex with respect to the size of the training dataset, which results in them perfectly fitting (i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is traditionally associated with detrimental overfitting, and yet a wide range of interpolating models -- from simple linear models to deep neural networks -- have recently been observed to generalize extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon has revealed that highly overparameterized models often improve over the best underparameterized model in test performance. Understanding learning in this overparameterized regime requires new theory and foundational empirical studies, even for the simplest case of the linear model. The underpinnings of this understanding have been laid in very recent analyses of overparameterized linear regression and related statistical learning tasks, which resulted in precise analytic characterizations of double descent. This paper provides a succinct overview of this emerging theory of overparameterized ML (henceforth abbreviated as TOPML) that explains these recent findings through a statistical signal processing perspective. We emphasize the unique aspects that define the TOPML research area as a subfield of modern ML theory and outline interesting open questions that remain.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

We study the impact of neural networks in text classification. Our focus is on training deep neural networks with proper weight initialization and greedy layer-wise pretraining. Results are compared with 1-layer neural networks and Support Vector Machines. We work with a dataset of labeled messages from the Twitter microblogging service and aim to predict weather conditions. A feature extraction procedure specific for the task is proposed, which applies dimensionality reduction using Latent Semantic Analysis. Our results show that neural networks outperform Support Vector Machines with Gaussian kernels, noticing performance gains from introducing additional hidden layers with nonlinearities. The impact of using Nesterov's Accelerated Gradient in backpropagation is also studied. We conclude that deep neural networks are a reasonable approach for text classification and propose further ideas to improve performance.

Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.

北京阿比特科技有限公司