In this paper, we study the finite satisfiability problem for the logic BE under the homogeneity assumption. BE is the cornerstone of Halpern and Shoham's interval temporal logic, and features modal operators corresponding to the prefix (a.k.a. "Begins") and suffix (a.k.a. "Ends") relations on intervals. In terms of complexity, BE lies in between the "Chop logic C", whose satisfiability problem is known to be non-elementary, and the PSPACE-complete interval logic D of the sub-interval (a.k.a. "During") relation. BE was shown to be EXPSPACE-hard, and the only known satisfiability procedure is primitive recursive, but not elementary. Our contribution consists of tightening the complexity bounds of the satisfiability problem for BE, by proving it to be EXPSPACE-complete. We do so by devising an equi-satisfiable normal form with boundedly many nested modalities. The normalization technique resembles Scott's quantifier elimination, but it turns out to be much more involved due to the limitations enforced by the homogeneity assumption.
Accurately measuring discrimination is crucial to faithfully assessing fairness of trained machine learning (ML) models. Any bias in measuring discrimination leads to either amplification or underestimation of the existing disparity. Several sources of bias exist and it is assumed that bias resulting from machine learning is born equally by different groups (e.g. females vs males, whites vs blacks, etc.). If, however, bias is born differently by different groups, it may exacerbate discrimination against specific sub-populations. Sampling bias, is inconsistently used in the literature to describe bias due to the sampling procedure. In this paper, we attempt to disambiguate this term by introducing clearly defined variants of sampling bias, namely, sample size bias (SSB) and underrepresentation bias (URB). We show also how discrimination can be decomposed into variance, bias, and noise. Finally, we challenge the commonly accepted mitigation approach that discrimination can be addressed by collecting more samples of the underrepresented group.
Runtime analysis has produced many results on the efficiency of simple evolutionary algorithms like the (1+1) EA, and its analogue called GSEMO in evolutionary multiobjective optimisation (EMO). Recently, the first runtime analyses of the famous and highly cited EMO algorithm NSGA-II have emerged, demonstrating that practical algorithms with thousands of applications can be rigorously analysed. However, these results only show that NSGA-II has the same performance guarantees as GSEMO and it is unclear how and when NSGA-II can outperform GSEMO. We study this question in noisy optimisation and consider a noise model that adds large amounts of posterior noise to all objectives with some constant probability $p$ per evaluation. We show that GSEMO fails badly on every noisy fitness function as it tends to remove large parts of the population indiscriminately. In contrast, NSGA-II is able to handle the noise efficiently on \textsc{LeadingOnesTrailingZeroes} when $p<1/2$, as the algorithm is able to preserve useful search points even in the presence of noise. We identify a phase transition at $p=1/2$ where the expected time to cover the Pareto front changes from polynomial to exponential. To our knowledge, this is the first proof that NSGA-II can outperform GSEMO and the first runtime analysis of NSGA-II in noisy optimisation.
Can free agency be compatible with determinism? Compatibilists argue that the answer is yes, and it has been suggested that the computer science principle of "computational irreducibility" sheds light on this compatibility. It implies that there cannot in general be shortcuts to predict the behavior of agents, explaining why deterministic agents often appear to act freely. In this paper, we introduce a variant of computational irreducibility that intends to capture more accurately aspects of actual (as opposed to apparent) free agency: computational sourcehood, i.e. the phenomenon that the successful prediction of a process' behavior must typically involve an almost-exact representation of the relevant features of that process, regardless of the time it takes to arrive at the prediction. We argue that this can be understood as saying that the process itself is the source of its actions, and we conjecture that many computational processes have this property. The main contribution of this paper is technical: we analyze whether and how a sensible formal definition of computational sourcehood is possible. While we do not answer the question completely, we show how it is related to finding a particular simulation preorder on Turing machines, we uncover concrete stumbling blocks towards constructing such a definition, and demonstrate that structure-preserving (as opposed to merely simple or efficient) functions between levels of simulation play a crucial role.
We propose, analyze and implement a virtual element discretization for an interfacial poroelasticity-elasticity consolidation problem. The formulation of the time-dependent poroelasticity equations uses displacement, fluid pressure, and total pressure, and the elasticity equations are written in the displacement-pressure formulation. The construction of the virtual element scheme does not require Lagrange multipliers to impose the transmission conditions (continuity of displacement and total traction, and no-flux for the fluid) on the interface. We show the stability and convergence of the virtual element method for different polynomial degrees, and the error bounds are robust with respect to delicate model parameters (such as Lame constants, permeability, and storativity coefficient). Finally, we provide numerical examples that illustrate the properties of the scheme.
The pursuit of long-term fairness involves the interplay between decision-making and the underlying data generating process. In this paper, through causal modeling with a directed acyclic graph (DAG) on the decision-distribution interplay, we investigate the possibility of achieving long-term fairness from a dynamic perspective. We propose Tier Balancing, a technically more challenging but more natural notion to achieve in the context of long-term, dynamic fairness analysis. Different from previous fairness notions that are defined purely on observed variables, our notion goes one step further, capturing behind-the-scenes situation changes on the unobserved latent causal factors that directly carry out the influence from the current decision to the future data distribution. Under the specified dynamics, we prove that in general one cannot achieve the long-term fairness goal only through one-step interventions. Furthermore, in the effort of approaching long-term fairness, we consider the mission of "getting closer to" the long-term fairness goal and present possibility and impossibility results accordingly.
Gig workers, and the products and services they provide, play an increasingly ubiquitous role in our daily lives. But despite growing evidence suggesting that worker well-being in gig economy platforms have become significant societal problems, few studies have investigated possible solutions. We take a stride in this direction by engaging workers, platform employees, and local regulators in a series of speed dating workshops using storyboards based on real-life situations to rapidly elicit stakeholder preferences for addressing financial, physical, and social issues related to worker well-being. Our results reveal that existing public and platformic infrastructures fall short in providing workers with resources needed to perform gigs, surfacing a need for multi-platform collaborations, technological innovations, as well as changes in regulations, labor laws, and the public's perception of gig workers, among others. Drawing from multi-stakeholder findings, we discuss these implications for technology, policy, and service as well as avenues for collaboration.
Orienting the edges of an undirected graph such that the resulting digraph satisfies some given constraints is a classical problem in graph theory, with multiple algorithmic applications. In particular, an $st$-orientation orients each edge of the input graph such that the resulting digraph is acyclic, and it contains a single source $s$ and a single sink $t$. Computing an $st$-orientation of a graph can be done efficiently, and it finds notable applications in graph algorithms and in particular in graph drawing. On the other hand, finding an $st$-orientation with at most $k$ transitive edges is more challenging and it was recently proven to be NP-hard already when $k=0$. We strengthen this result by showing that the problem remains NP-hard even for graphs of bounded diameter, and for graphs of bounded vertex degree. These computational lower bounds naturally raise the question about which structural parameters can lead to tractable parameterizations of the problem. Our main result is a fixed-parameter tractable algorithm parameterized by treewidth.
We consider a first-order logic for the integers with addition. This logic extends classical first-order logic by modulo-counting, threshold-counting and exact-counting quantifiers, all applied to tuples of variables (here, residues are given as terms while moduli and thresholds are given explicitly). Our main result shows that satisfaction for this logic is decidable in two-fold exponential space. If only threshold- and exact-counting quantifiers are allowed, we prove an upper bound of alternating two-fold exponential time with linearly many alternations. This latter result almost matches Berman's exact complexity of first-order logic without counting quantifiers. To obtain these results, we first translate threshold- and exact-counting quantifiers into classical first-order logic in polynomial time (which already proves the second result). To handle the remaining modulo-counting quantifiers for tuples, we first reduce them in doubly exponential time to modulo-counting quantifiers for single elements. For these quantifiers, we provide a quantifier elimination procedure similar to Reddy and Loveland's procedure for first-order logic and analyse the growth of coefficients, constants, and moduli appearing in this process. The bounds obtained this way allow to restrict quantification in the original formula to integers of bounded size which then implies the first result mentioned above. Our logic is incomparable with the logic considered by Chistikov et al. in 2022. They allow more general counting operations in quantifiers, but only unary quantifiers. The move from unary to non-unary quantifiers is non-trivial, since, e.g., the non-unary version of the H\"artig quantifier results in an undecidable theory.
Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.