亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The IEEE VIS Conference (or VIS) hosts more than 1000 people annually. It brings together visualization researchers and practitioners from across the world to share new research and knowledge. Behind the scenes, a team of volunteers puts together the entire conference and makes sure it runs smoothly. Organizing involves logistics of the conference, ensuring that the attendees have an enjoyable time, allocating rooms to multiple concurrent tracks, and keeping the conference within budget. In recent years, the COVID-19 pandemic has abruptly disrupted plans, forcing organizers to switch to virtual, hybrid, and satellite formats. These alternatives offer many benefits: fewer costs (e.g., travel, venue, institutional), greater accessibility (who can physically travel, who can get visas, who can get child care), and a lower carbon footprint (as people do not need to fly to attend). As many conferences begin to revert to the pre-pandemic status quo of primarily in-person conferences, we suggest that it is an opportune moment to reflect on the benefits and drawbacks of lower-carbon conference formats. To learn more about the logistics of conference organizing, we talked to 6 senior executive-level VIS organizers. We review some of the many considerations that go into planning, particularly with regard to how they influence decisions about alternative formats. We aim to start a discussion about the sustainability of VIS -- including sustainability for finance, volunteers, and, central to this work, the environment -- for the next three years and the next three hundred years.

相關內容

IEEE VIS是可視(shi)化和(he)可視(shi)化分析的(de)理論、方法(fa)和(he)應(ying)用發展的(de)首要論壇。會議會召集來自大(da)學,政(zheng)府(fu)和(he)行(xing)業(ye)的(de)研(yan)究人員和(he)從業(ye)人員組(zu)成(cheng)的(de)國際社會,就可視(shi)化工具的(de)設(she)計和(he)使用交流最新發現。 官(guan)網地址:

Automatic Speech Recognition (ASR) has witnessed a profound research interest. Recent breakthroughs have given ASR systems different prospects such as faithfully transcribing spoken language, which is a pivotal advancement in building conversational agents. However, there is still an imminent challenge of accurately discerning context-dependent words and phrases. In this work, we propose a novel approach for enhancing contextual recognition within ASR systems via semantic lattice processing leveraging the power of deep learning models in accurately delivering spot-on transcriptions across a wide variety of vocabularies and speaking styles. Our solution consists of using Hidden Markov Models and Gaussian Mixture Models (HMM-GMM) along with Deep Neural Networks (DNN) models integrating both language and acoustic modeling for better accuracy. We infused our network with the use of a transformer-based model to properly rescore the word lattice achieving remarkable capabilities with a palpable reduction in Word Error Rate (WER). We demonstrate the effectiveness of our proposed framework on the LibriSpeech dataset with empirical analyses.

Large Language Models (LLMs) especially ChatGPT have produced impressive results in various areas, but their potential human-like psychology is still largely unexplored. Existing works study the virtual personalities of LLMs but rarely explore the possibility of analyzing human personalities via LLMs. This paper presents a generic evaluation framework for LLMs to assess human personalities based on Myers Briggs Type Indicator (MBTI) tests. Specifically, we first devise unbiased prompts by randomly permuting options in MBTI questions and adopt the average testing result to encourage more impartial answer generation. Then, we propose to replace the subject in question statements to enable flexible queries and assessments on different subjects from LLMs. Finally, we re-formulate the question instructions in a manner of correctness evaluation to facilitate LLMs to generate clearer responses. The proposed framework enables LLMs to flexibly assess personalities of different groups of people. We further propose three evaluation metrics to measure the consistency, robustness, and fairness of assessment results from state-of-the-art LLMs including ChatGPT and GPT-4. Our experiments reveal ChatGPT's ability to assess human personalities, and the average results demonstrate that it can achieve more consistent and fairer assessments in spite of lower robustness against prompt biases compared with InstructGPT.

We introduce an online variant of mobile facility location (MFL) (introduced by Demaine et al. [SODA' 07]). We call this new problem online mobile facility location (OMFL). In the OMFL problem, initially, we are given a set of $k$ mobile facilities with their starting locations. One by one, requests are added. After each request arrives, one can make some changes to the facility locations before the subsequent request arrives. Each request is always assigned to the nearest facility. The cost of this assignment is the distance from the request to the facility. The objective is to minimize the total cost, which consists of the relocation cost of facilities and the distance cost of requests to their nearest facilities. We provide a lower bound for the OMFL problem that even holds on uniform metrics. A natural approach to solve the OMFL problem for general metric spaces is to utilize hierarchically well-separated trees (HSTs) and directly solve the OMFL problem on HSTs. In this paper, we provide the first step in this direction by solving a generalized variant of the OMFL problem on uniform metrics that we call G-OMFL. We devise a simple deterministic online algorithm and provide a tight analysis for the algorithm. The second step remains an open question. Inspired by the $k$-server problem, we introduce a new variant of the OMFL problem that focuses solely on minimizing movement cost. We refer to this variant as M-OMFL. Additionally, we provide a lower bound for M-OMFL that is applicable even on uniform metrics.

Low Earth Orbit (LEO) satellite networks are quickly gaining traction with promises of impressively low latency, high bandwidth, and global reach. However, the research community knows relatively little about their operation and performance in practice. The obscurity is largely due to the high barrier of entry for measuring LEO networks, which requires deploying specialized hardware or recruiting large numbers of satellite Internet customers. In this paper, we introduce HitchHiking, a methodology that democratizes global visibility into LEO satellite networks. HitchHiking builds on the observation that Internet-exposed services that use LEO Internet can reveal satellite network architecture and performance, bypassing the need for specialized hardware. We evaluate HitchHiking against ground truth measurements and prior methods, showing that it provides more coverage and accuracy. With HitchHiking, we complete the largest study to date of Starlink network latency, measuring over 2,400 users across 13 countries. We uncover unexpected patterns in latency that surface how LEO routing is more complex than previously understood. Finally, we conclude with recommendations for future research on LEO networks.

Technology ecosystems often undergo significant transformations as they mature. For example, telephony, the Internet, and PCs all started with a single provider, but in the United States each is now served by a competitive market that uses comprehensive and universal technology standards to provide compatibility. This white paper presents our view on how the cloud ecosystem, barely over fifteen years old, could evolve as it matures.

This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels. It is based on two core designs. First, we develop an asymmetric encoder-decoder architecture, with an encoder that operates only on the visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original image from the latent representation and mask tokens. Second, we find that masking a high proportion of the input image, e.g., 75%, yields a nontrivial and meaningful self-supervisory task. Coupling these two designs enables us to train large models efficiently and effectively: we accelerate training (by 3x or more) and improve accuracy. Our scalable approach allows for learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge model achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data. Transfer performance in downstream tasks outperforms supervised pre-training and shows promising scaling behavior.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-supervised settings, with the goal of incorporating label dependencies. Because current GNNs are not universal (i.e., most-expressive) graph representations, we propose a general collective learning approach to increase the representation power of any existing GNN. Our framework combines ideas from collective classification with self-supervised learning, and uses a Monte Carlo approach to sampling embeddings for inductive learning across graphs. We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy, for a variety of state-of-the-art GNNs.

Graph Convolutional Networks (GCNs) have recently become the primary choice for learning from graph-structured data, superseding hash fingerprints in representing chemical compounds. However, GCNs lack the ability to take into account the ordering of node neighbors, even when there is a geometric interpretation of the graph vertices that provides an order based on their spatial positions. To remedy this issue, we propose Geometric Graph Convolutional Network (geo-GCN) which uses spatial features to efficiently learn from graphs that can be naturally located in space. Our contribution is threefold: we propose a GCN-inspired architecture which (i) leverages node positions, (ii) is a proper generalisation of both GCNs and Convolutional Neural Networks (CNNs), (iii) benefits from augmentation which further improves the performance and assures invariance with respect to the desired properties. Empirically, geo-GCN outperforms state-of-the-art graph-based methods on image classification and chemical tasks.

We investigate the training and performance of generative adversarial networks using the Maximum Mean Discrepancy (MMD) as critic, termed MMD GANs. As our main theoretical contribution, we clarify the situation with bias in GAN loss functions raised by recent work: we show that gradient estimators used in the optimization process for both MMD GANs and Wasserstein GANs are unbiased, but learning a discriminator based on samples leads to biased gradients for the generator parameters. We also discuss the issue of kernel choice for the MMD critic, and characterize the kernel corresponding to the energy distance used for the Cramer GAN critic. Being an integral probability metric, the MMD benefits from training strategies recently developed for Wasserstein GANs. In experiments, the MMD GAN is able to employ a smaller critic network than the Wasserstein GAN, resulting in a simpler and faster-training algorithm with matching performance. We also propose an improved measure of GAN convergence, the Kernel Inception Distance, and show how to use it to dynamically adapt learning rates during GAN training.

北京阿比特科技有限公司