Automatic Speech Recognition (ASR) has witnessed a profound research interest. Recent breakthroughs have given ASR systems different prospects such as faithfully transcribing spoken language, which is a pivotal advancement in building conversational agents. However, there is still an imminent challenge of accurately discerning context-dependent words and phrases. In this work, we propose a novel approach for enhancing contextual recognition within ASR systems via semantic lattice processing leveraging the power of deep learning models in accurately delivering spot-on transcriptions across a wide variety of vocabularies and speaking styles. Our solution consists of using Hidden Markov Models and Gaussian Mixture Models (HMM-GMM) along with Deep Neural Networks (DNN) models integrating both language and acoustic modeling for better accuracy. We infused our network with the use of a transformer-based model to properly rescore the word lattice achieving remarkable capabilities with a palpable reduction in Word Error Rate (WER). We demonstrate the effectiveness of our proposed framework on the LibriSpeech dataset with empirical analyses.
With the growing interest in Machine Learning (ML), Graphic Processing Units (GPUs) have become key elements of any computing infrastructure. Their widespread deployment in data centers and the cloud raises the question of how to use them beyond ML use cases, with growing interest in employing them in a database context. In this paper, we explore and analyze the implementation of relational joins on GPUs from an end-to-end perspective, meaning that we take result materialization into account. We conduct a comprehensive performance study of state-of-the-art GPU-based join algorithms over diverse synthetic workloads and TPC-H/TPC-DS benchmarks. Without being restricted to the conventional setting where each input relation has only one key and one non-key with all attributes being 4-bytes long, we investigate the effect of various factors (e.g., input sizes, number of non-key columns, skewness, data types, match ratios, and number of joins) on the end-to-end throughput. Furthermore, we propose a technique called "Gather-from-Transformed-Relations" (GFTR) to reduce the long-ignored yet high materialization cost in GPU-based joins. The experimental evaluation shows significant performance improvements from GFTR, with throughput gains of up to 2.3 times over previous work. The insights gained from the performance study not only advance the understanding of GPU-based joins but also introduce a structured approach to selecting the most efficient GPU join algorithm based on the input relation characteristics.
To protect an organizations' endpoints from sophisticated cyberattacks, advanced detection methods are required. In this research, we present GCNetOmaly: a graph convolutional network (GCN)-based variational autoencoder (VAE) anomaly detector trained on data that include connection events among internal and external machines. As input, the proposed GCN-based VAE model receives two matrices: (i) the normalized adjacency matrix, which represents the connections among the machines, and (ii) the feature matrix, which includes various features (demographic, statistical, process-related, and Node2vec structural features) that are used to profile the individual nodes/machines. After training the model on data collected for a predefined time window, the model is applied on the same data; the reconstruction score obtained by the model for a given machine then serves as the machine's anomaly score. GCNetOmaly was evaluated on real, large-scale data logged by Carbon Black EDR from a large financial organization's automated teller machines (ATMs) as well as communication with Active Directory (AD) servers in two setups: unsupervised and supervised. The results of our evaluation demonstrate GCNetOmaly's effectiveness in detecting anomalous behavior of machines on unsupervised data.
Contrastive learning (CL) has recently gained significant popularity in the field of recommendation. Its ability to learn without heavy reliance on labeled data is a natural antidote to the data sparsity issue. Previous research has found that CL can not only enhance recommendation accuracy but also inadvertently exhibit remarkable robustness against noise. However, this paper identifies a vulnerability of CL-based recommender systems: Compared with their non-CL counterparts, they are even more susceptible to poisoning attacks that aim to promote target items. Our analysis points to the uniform dispersion of representations led by the CL loss as the very factor that accounts for this vulnerability. We further theoretically and empirically demonstrate that the optimization of CL loss can lead to smooth spectral values of representations. Based on these insights, we attempt to reveal the potential poisoning attacks against CL-based recommender systems. The proposed attack encompasses a dual-objective framework: One that induces a smoother spectral value distribution to amplify the CL loss's inherent dispersion effect, named dispersion promotion; and the other that directly elevates the visibility of target items, named rank promotion. We validate the destructiveness of our attack model through extensive experimentation on four datasets. By shedding light on these vulnerabilities, we aim to facilitate the development of more robust CL-based recommender systems.
There is a significant disconnect between linguistic theory and modern NLP practice, which relies heavily on inscrutable black-box architectures. DisCoCirc is a newly proposed model for meaning that aims to bridge this divide, by providing neuro-symbolic models that incorporate linguistic structure. DisCoCirc represents natural language text as a `circuit' that captures the core semantic information of the text. These circuits can then be interpreted as modular machine learning models. Additionally, DisCoCirc fulfils another major aim of providing an NLP model that can be implemented on near-term quantum computers. In this paper we describe a software pipeline that converts English text to its DisCoCirc representation. The pipeline achieves coverage over a large fragment of the English language. It relies on Combinatory Categorial Grammar (CCG) parses of the input text as well as coreference resolution information. This semantic and syntactic information is used in several steps to convert the text into a simply-typed $\lambda$-calculus term, and then into a circuit diagram. This pipeline will enable the application of the DisCoCirc framework to NLP tasks, using both classical and quantum approaches.
Over the past few years, silicon photonics-based computing has emerged as a promising alternative to CMOS-based computing for Deep Neural Networks (DNN). Unfortunately, the non-linear operations and the high-precision requirements of DNNs make it extremely challenging to design efficient silicon photonics-based systems for DNN inference and training. Hyperdimensional Computing (HDC) is an emerging, brain-inspired machine learning technique that enjoys several advantages over existing DNNs, including being lightweight, requiring low-precision operands, and being robust to noise introduced by the nonidealities in the hardware. For HDC, computing in-memory (CiM) approaches have been widely used, as CiM reduces the data transfer cost if the operands can fit into the memory. However, inefficient multi-bit operations, high write latency, and low endurance make CiM ill-suited for HDC. On the other hand, the existing electro-photonic DNN accelerators are inefficient for HDC because they are specifically optimized for matrix multiplication in DNNs and consume a lot of power with high-precision data converters. In this paper, we argue that photonic computing and HDC complement each other better than photonic computing and DNNs, or CiM and HDC. We propose PhotoHDC, the first-ever electro-photonic accelerator for HDC training and inference, supporting the basic, record-based, and graph encoding schemes. Evaluating with popular datasets, we show that our accelerator can achieve two to five orders of magnitude lower EDP than the state-of-the-art electro-photonic DNN accelerators for implementing HDC training and inference. PhotoHDC also achieves four orders of magnitude lower energy-delay product than CiM-based accelerators for both HDC training and inference.
Technology ecosystems often undergo significant transformations as they mature. For example, telephony, the Internet, and PCs all started with a single provider, but in the United States each is now served by a competitive market that uses comprehensive and universal technology standards to provide compatibility. This white paper presents our view on how the cloud ecosystem, barely over fifteen years old, could evolve as it matures.
This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels. It is based on two core designs. First, we develop an asymmetric encoder-decoder architecture, with an encoder that operates only on the visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original image from the latent representation and mask tokens. Second, we find that masking a high proportion of the input image, e.g., 75%, yields a nontrivial and meaningful self-supervisory task. Coupling these two designs enables us to train large models efficiently and effectively: we accelerate training (by 3x or more) and improve accuracy. Our scalable approach allows for learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge model achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data. Transfer performance in downstream tasks outperforms supervised pre-training and shows promising scaling behavior.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.
Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.
Graph Convolutional Networks (GCNs) have recently become the primary choice for learning from graph-structured data, superseding hash fingerprints in representing chemical compounds. However, GCNs lack the ability to take into account the ordering of node neighbors, even when there is a geometric interpretation of the graph vertices that provides an order based on their spatial positions. To remedy this issue, we propose Geometric Graph Convolutional Network (geo-GCN) which uses spatial features to efficiently learn from graphs that can be naturally located in space. Our contribution is threefold: we propose a GCN-inspired architecture which (i) leverages node positions, (ii) is a proper generalisation of both GCNs and Convolutional Neural Networks (CNNs), (iii) benefits from augmentation which further improves the performance and assures invariance with respect to the desired properties. Empirically, geo-GCN outperforms state-of-the-art graph-based methods on image classification and chemical tasks.