The recent progress in generative AI techniques has significantly influenced software engineering, as AI-driven methods tackle common developer challenges such as code synthesis from descriptions, program repair, and natural language summaries for existing programs. Large-scale language models (LLMs), like OpenAI's Codex, are increasingly adopted in AI-driven software engineering. ChatGPT, another LLM, has gained considerable attention for its potential as a bot for discussing source code, suggesting changes, providing descriptions, and generating code. To evaluate the practicality of LLMs as programming assistant bots, it is essential to examine their performance on unseen problems and various tasks. In our paper, we conduct an empirical analysis of ChatGPT's potential as a fully automated programming assistant, emphasizing code generation, program repair, and code summarization. Our study assesses ChatGPT's performance on common programming problems and compares it to state-of-the-art approaches using two benchmarks. Our research indicates that ChatGPT effectively handles typical programming challenges. However, we also discover the limitations in its attention span: comprehensive descriptions can restrict ChatGPT's focus and impede its ability to utilize its extensive knowledge for problem-solving. Surprisingly, we find that ChatGPT's summary explanations of incorrect code provide valuable insights into the developer's original intentions. This insight can be served as a foundation for future work addressing the oracle problem. Our study offers valuable perspectives on the development of LLMs for programming assistance, specifically by highlighting the significance of prompt engineering and enhancing our comprehension of ChatGPT's practical applications in software engineering.
Emerging psychopathology studies are showing that patterns of changes in emotional state -- emotion dynamics -- are associated with overall well-being and mental health. More recently, there has been some work in tracking emotion dynamics through one's utterances, allowing for data to be collected on a larger scale across time and people. However, several questions about how emotion dynamics change with age, especially in children, and when determined through children's writing, remain unanswered. In this work, we use both a lexicon and a machine learning based approach to quantify characteristics of emotion dynamics determined from poems written by children of various ages. We show that both approaches point to similar trends: consistent increasing intensities for some emotions (e.g., anger, fear, joy, sadness, arousal, and dominance) with age and a consistent decreasing valence with age. We also find increasing emotional variability, rise rates (i.e., emotional reactivity), and recovery rates (i.e., emotional regulation) with age. These results act as a useful baselines for further research in how patterns of emotions expressed by children change with age, and their association with mental health.
Regulatory bodies worldwide are intensifying their efforts to ensure transparency in influencer marketing on social media through instruments like the Unfair Commercial Practices Directive (UCPD) in the European Union, or Section 5 of the Federal Trade Commission Act. Yet enforcing these obligations has proven to be highly problematic due to the sheer scale of the influencer market. The task of automatically detecting sponsored content aims to enable the monitoring and enforcement of such regulations at scale. Current research in this field primarily frames this problem as a machine learning task, focusing on developing models that achieve high classification performance in detecting ads. These machine learning tasks rely on human data annotation to provide ground truth information. However, agreement between annotators is often low, leading to inconsistent labels that hinder the reliability of models. To improve annotation accuracy and, thus, the detection of sponsored content, we propose using chatGPT to augment the annotation process with phrases identified as relevant features and brief explanations. Our experiments show that this approach consistently improves inter-annotator agreement and annotation accuracy. Additionally, our survey of user experience in the annotation task indicates that the explanations improve the annotators' confidence and streamline the process. Our proposed methods can ultimately lead to more transparency and alignment with regulatory requirements in sponsored content detection.
The development of large language models (LLMs) such as ChatGPT has brought a lot of attention recently. However, their evaluation in the benchmark academic datasets remains under-explored due to the difficulty of evaluating the generative outputs produced by this model against the ground truth. In this paper, we aim to present a thorough evaluation of ChatGPT's performance on diverse academic datasets, covering tasks like question-answering, text summarization, code generation, commonsense reasoning, mathematical problem-solving, machine translation, bias detection, and ethical considerations. Specifically, we evaluate ChatGPT across 140 tasks and analyze 255K responses it generates in these datasets. This makes our work the largest evaluation of ChatGPT in NLP benchmarks. In short, our study aims to validate the strengths and weaknesses of ChatGPT in various tasks and provide insights for future research using LLMs. We also report a new emergent ability to follow multi-query instructions that we mostly found in ChatGPT and other instruction-tuned models. Our extensive evaluation shows that even though ChatGPT is capable of performing a wide variety of tasks, and may obtain impressive performance in several benchmark datasets, it is still far from achieving the ability to reliably solve many challenging tasks. By providing a thorough assessment of ChatGPT's performance across diverse NLP tasks, this paper sets the stage for a targeted deployment of ChatGPT-like LLMs in real-world applications.
Large Language Models (LLMs) have made remarkable advancements in the field of artificial intelligence, significantly reshaping the human-computer interaction. We not only focus on the performance of LLMs, but also explore their features from a psychological perspective, acknowledging the importance of understanding their behavioral characteristics. Our study examines the behavioral patterns displayed by LLMs by employing trait theory, a psychological framework. We first focus on evaluating the consistency of personality types exhibited by ChatGPT. Furthermore, experiments include cross-lingual effects on seven additional languages, and the investigation of six other LLMs. Moreover, the study investigates whether ChatGPT can exhibit personality changes in response to instructions or contextual cues. The findings show that ChatGPT consistently maintains its ENFJ personality regardless of instructions or contexts. By shedding light on the personalization of LLMs, we anticipate that our study will serve as a catalyst for further research in this field.
Variability management (VM) in software product line engineering (SPLE) is introduced as an abstraction that enables the reuse and customization of assets. VM is a complex task involving the identification, representation, and instantiation of variability for specific products, as well as the evolution of variability itself. This work presents a comparison and contrast between existing VM approaches using qualitative meta-synthesis to determine the underlying perspectives, metaphors, and concepts of existing methods. A common frame of reference for the VM was proposed as the result of this analysis. Putting metaphors in the context of the dimensions in which variability occurs and identifying its key concepts provides a better understanding of its management and enables several analyses and evaluation opportunities. Finally, the proposed framework was evaluated using a qualitative study approach. The results of the evaluation phase suggest that the organizations in practice only focus on one dimension. The presented frame of reference will help the organization to cover this gap in practice.
Generative Artificial Intelligence (GAI) has made outstanding strides in recent years, with a good-sized impact on software product management. Drawing on pertinent articles from 2016 to 2023, this systematic literature evaluation reveals generative AI's potential applications, benefits, and constraints in this area. The study shows that technology can assist in idea generation, market research, customer insights, product requirements engineering, and product development. It can help reduce development time and costs through automatic code generation, customer feedback analysis, and more. However, the technology's accuracy, reliability, and ethical consideration persist. Ultimately, generative AI's practical application can significantly improve software product management activities, leading to more efficient use of resources, better product outcomes, and improved end-user experiences.
This paper explores the concept of leveraging generative AI as a mapping assistant for enhancing the efficiency of collaborative mapping. We present results of an experiment that combines multiple sources of volunteered geographic information (VGI) and large language models (LLMs). Three analysts described the content of crowdsourced Mapillary street-level photographs taken along roads in a small test area in Miami, Florida. GPT-3.5-turbo was instructed to suggest the most appropriate tagging for each road in OpenStreetMap (OSM). The study also explores the utilization of BLIP-2, a state-of-the-art multimodal pre-training method as an artificial analyst of street-level photographs in addition to human analysts. Results demonstrate two ways to effectively increase the accuracy of mapping suggestions without modifying the underlying AI models: by (1) providing a more detailed description of source photographs, and (2) combining prompt engineering with additional context (e.g. location and objects detected along a road). The first approach increases the suggestion accuracy by up to 29%, and the second one by up to 20%.
This paper investigates the capabilities of ChatGPT as an automated assistant in diverse domains, including scientific writing, mathematics, education, programming, and healthcare. We explore the potential of ChatGPT to enhance productivity, streamline problem-solving processes, and improve writing style. Furthermore, we highlight the potential risks associated with excessive reliance on ChatGPT in these fields. These limitations encompass factors like incorrect and fictitious responses, inaccuracies in code, limited logical reasoning abilities, overconfidence, and critical ethical concerns of copyrights and privacy violation. We outline areas and objectives where ChatGPT proves beneficial, applications where it should be used judiciously, and scenarios where its reliability may be limited. In light of observed limitations, and given that the tool's fundamental errors may pose a special challenge for non-experts, ChatGPT should be used with a strategic methodology. By drawing from comprehensive experimental studies, we offer methods and flow charts for effectively using ChatGPT. Our recommendations emphasize iterative interaction with ChatGPT and independent verification of its outputs. Considering the importance of utilizing ChatGPT judiciously and with expertise, we recommend its usage for experts who are well-versed in the respective domains.
Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
Commonsense knowledge and commonsense reasoning are some of the main bottlenecks in machine intelligence. In the NLP community, many benchmark datasets and tasks have been created to address commonsense reasoning for language understanding. These tasks are designed to assess machines' ability to acquire and learn commonsense knowledge in order to reason and understand natural language text. As these tasks become instrumental and a driving force for commonsense research, this paper aims to provide an overview of existing tasks and benchmarks, knowledge resources, and learning and inference approaches toward commonsense reasoning for natural language understanding. Through this, our goal is to support a better understanding of the state of the art, its limitations, and future challenges.