亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Regulatory bodies worldwide are intensifying their efforts to ensure transparency in influencer marketing on social media through instruments like the Unfair Commercial Practices Directive (UCPD) in the European Union, or Section 5 of the Federal Trade Commission Act. Yet enforcing these obligations has proven to be highly problematic due to the sheer scale of the influencer market. The task of automatically detecting sponsored content aims to enable the monitoring and enforcement of such regulations at scale. Current research in this field primarily frames this problem as a machine learning task, focusing on developing models that achieve high classification performance in detecting ads. These machine learning tasks rely on human data annotation to provide ground truth information. However, agreement between annotators is often low, leading to inconsistent labels that hinder the reliability of models. To improve annotation accuracy and, thus, the detection of sponsored content, we propose using chatGPT to augment the annotation process with phrases identified as relevant features and brief explanations. Our experiments show that this approach consistently improves inter-annotator agreement and annotation accuracy. Additionally, our survey of user experience in the annotation task indicates that the explanations improve the annotators' confidence and streamline the process. Our proposed methods can ultimately lead to more transparency and alignment with regulatory requirements in sponsored content detection.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · PID · 控制器 · Prophet · MoDELS ·
2023 年 7 月 31 日

We study the problem of uncertainty quantification for time series prediction, with the goal of providing easy-to-use algorithms with formal guarantees. The algorithms we present build upon ideas from conformal prediction and control theory, are able to prospectively model conformal scores in an online setting, and adapt to the presence of systematic errors due to seasonality, trends, and general distribution shifts. Our theory both simplifies and strengthens existing analyses in online conformal prediction. Experiments on 4-week-ahead forecasting of statewide COVID-19 death counts in the U.S. show an improvement in coverage over the ensemble forecaster used in official CDC communications. We also run experiments on predicting electricity demand, market returns, and temperature using autoregressive, Theta, Prophet, and Transformer models. We provide an extendable codebase for testing our methods and for the integration of new algorithms, data sets, and forecasting rules.

Aligning model representations to humans has been found to improve robustness and generalization. However, such methods often focus on standard observational data. Synthetic data is proliferating and powering many advances in machine learning; yet, it is not always clear whether synthetic labels are perceptually aligned to humans -- rendering it likely model representations are not human aligned. We focus on the synthetic data used in mixup: a powerful regularizer shown to improve model robustness, generalization, and calibration. We design a comprehensive series of elicitation interfaces, which we release as HILL MixE Suite, and recruit 159 participants to provide perceptual judgments along with their uncertainties, over mixup examples. We find that human perceptions do not consistently align with the labels traditionally used for synthetic points, and begin to demonstrate the applicability of these findings to potentially increase the reliability of downstream models, particularly when incorporating human uncertainty. We release all elicited judgments in a new data hub we call H-Mix.

Recent advances of powerful Language Models have allowed Natural Language Generation (NLG) to emerge as an important technology that can not only perform traditional tasks like summarisation or translation, but also serve as a natural language interface to a variety of applications. As such, it is crucial that NLG systems are trustworthy and reliable, for example by indicating when they are likely to be wrong; and supporting multiple views, backgrounds and writing styles -- reflecting diverse human sub-populations. In this paper, we argue that a principled treatment of uncertainty can assist in creating systems and evaluation protocols better aligned with these goals. We first present the fundamental theory, frameworks and vocabulary required to represent uncertainty. We then characterise the main sources of uncertainty in NLG from a linguistic perspective, and propose a two-dimensional taxonomy that is more informative and faithful than the popular aleatoric/epistemic dichotomy. Finally, we move from theory to applications and highlight exciting research directions that exploit uncertainty to power decoding, controllable generation, self-assessment, selective answering, active learning and more.

In argumentative writing, writers must brainstorm hierarchical writing goals, ensure the persuasiveness of their arguments, and revise and organize their plans through drafting. Recent advances in large language models (LLMs) have made interactive text generation through a chat interface (e.g., ChatGPT) possible. However, this approach often neglects implicit writing context and user intent, lacks support for user control and autonomy, and provides limited assistance for sensemaking and revising writing plans. To address these challenges, we introduce VISAR, an AI-enabled writing assistant system designed to help writers brainstorm and revise hierarchical goals within their writing context, organize argument structures through synchronized text editing and visual programming, and enhance persuasiveness with argumentation spark recommendations. VISAR allows users to explore, experiment with, and validate their writing plans using automatic draft prototyping. A controlled lab study confirmed the usability and effectiveness of VISAR in facilitating the argumentative writing planning process.

In this work, we explore a framework for contextual decision-making to study how the relevance and quantity of past data affects the performance of a data-driven policy. We analyze a contextual Newsvendor problem in which a decision-maker needs to trade-off between an underage and an overage cost in the face of uncertain demand. We consider a setting in which past demands observed under ``close by'' contexts come from close by distributions and analyze the performance of data-driven algorithms through a notion of context-dependent worst-case expected regret. We analyze the broad class of Weighted Empirical Risk Minimization (WERM) policies which weigh past data according to their similarity in the contextual space. This class includes classical policies such as ERM, k-Nearest Neighbors and kernel-based policies. Our main methodological contribution is to characterize exactly the worst-case regret of any WERM policy on any given configuration of contexts. To the best of our knowledge, this provides the first understanding of tight performance guarantees in any contextual decision-making problem, with past literature focusing on upper bounds via concentration inequalities. We instead take an optimization approach, and isolate a structure in the Newsvendor loss function that allows to reduce the infinite-dimensional optimization problem over worst-case distributions to a simple line search. This in turn allows us to unveil fundamental insights that were obfuscated by previous general-purpose bounds. We characterize actual guaranteed performance as a function of the contexts, as well as granular insights on the learning curve of algorithms.

This research draws upon cognitive psychology and information systems studies to anticipate user engagement and decision-making on digital platforms. By employing natural language processing (NLP) techniques and insights from cognitive bias research, we delve into user interactions with synonyms within digital content. Our methodology synthesizes four cognitive biasesRepresentativeness, Ease-of-use, Affect, and Distributioninto the READ model. Through a comprehensive user survey, we assess the model's ability to predict user engagement, discovering that synonyms that accurately represent core ideas, are easy to understand, elicit emotional responses, and are commonly encountered, promote greater user engagement. Crucially, our work offers a fresh lens on human-computer interaction, digital behaviors, and decision-making processes. Our results highlight the promise of cognitive biases as potent indicators of user engagement, underscoring their significance in designing effective digital content across fields like education and marketing.

Recently, ChatGPT, along with DALL-E-2 and Codex,has been gaining significant attention from society. As a result, many individuals have become interested in related resources and are seeking to uncover the background and secrets behind its impressive performance. In fact, ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC), which involves the creation of digital content, such as images, music, and natural language, through AI models. The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace. AIGC is achieved by extracting and understanding intent information from instructions provided by human, and generating the content according to its knowledge and the intent information. In recent years, large-scale models have become increasingly important in AIGC as they provide better intent extraction and thus, improved generation results. With the growth of data and the size of the models, the distribution that the model can learn becomes more comprehensive and closer to reality, leading to more realistic and high-quality content generation. This survey provides a comprehensive review on the history of generative models, and basic components, recent advances in AIGC from unimodal interaction and multimodal interaction. From the perspective of unimodality, we introduce the generation tasks and relative models of text and image. From the perspective of multimodality, we introduce the cross-application between the modalities mentioned above. Finally, we discuss the existing open problems and future challenges in AIGC.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success and become a milestone in the field of artificial intelligence (AI). Owing to sophisticated pre-training objectives and huge model parameters, large-scale PTMs can effectively capture knowledge from massive labeled and unlabeled data. By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks, which has been extensively demonstrated via experimental verification and empirical analysis. It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch. In this paper, we take a deep look into the history of pre-training, especially its special relation with transfer learning and self-supervised learning, to reveal the crucial position of PTMs in the AI development spectrum. Further, we comprehensively review the latest breakthroughs of PTMs. These breakthroughs are driven by the surge of computational power and the increasing availability of data, towards four important directions: designing effective architectures, utilizing rich contexts, improving computational efficiency, and conducting interpretation and theoretical analysis. Finally, we discuss a series of open problems and research directions of PTMs, and hope our view can inspire and advance the future study of PTMs.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司