亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

DFU is a severe complication of diabetes that can lead to amputation of the lower limb if not treated properly. Inspired by the 2021 Diabetic Foot Ulcer Grand Challenge, researchers designed automated multi-class classification of DFU, including infection, ischaemia, both of these conditions, and none of these conditions. However, it remains a challenge as classification accuracy is still not satisfactory. This paper proposes a Venn Diagram interpretation of multi-label CNN-based method, utilizing different image enhancement strategies, to improve the multi-class DFU classification. We propose to reduce the four classes into two since both class wounds can be interpreted as the simultaneous occurrence of infection and ischaemia and none class wounds as the absence of infection and ischaemia. We introduce a novel Venn Diagram representation block in the classifier to interpret all four classes from these two classes. To make our model more resilient, we propose enhancing the perceptual quality of DFU images, particularly blurry or inconsistently lit DFU images, by performing color and sharpness enhancements on them. We also employ a fine-tuned optimization technique, adaptive sharpness aware minimization, to improve the CNN model generalization performance. The proposed method is evaluated on the test dataset of DFUC2021, containing 5,734 images and the results are compared with the top-3 winning entries of DFUC2021. Our proposed approach outperforms these existing approaches and achieves Macro-Average F1, Recall and Precision scores of 0.6592, 0.6593, and 0.6652, respectively.Additionally, We perform ablation studies and image quality measurements to further interpret our proposed method. This proposed method will benefit patients with DFUs since it tackles the inconsistencies in captured images and can be employed for a more robust remote DFU wound classification.

相關內容

We address personalized image enhancement in this study, where we enhance input images for each user based on the user's preferred images. Previous methods apply the same preferred style to all input images (i.e., only one style for each user); in contrast to these methods, we aim to achieve content-aware personalization by applying different styles to each image considering the contents. For content-aware personalization, we make two contributions. First, we propose a method named masked style modeling, which can predict a style for an input image considering the contents by using the framework of masked language modeling. Second, to allow this model to consider the contents of images, we propose a novel training scheme where we download images from Flickr and create pseudo input and retouched image pairs using a degrading model. We conduct quantitative evaluations and a user study, and our method trained using our training scheme successfully achieves content-aware personalization; moreover, our method outperforms other previous methods in this field. Our source code is available at //github.com/satoshi-kosugi/masked-style-modeling.

We are interested in the problem of translating between two representations of closure systems, namely implicational bases and meet-irreducible elements. Albeit its importance, the problem is open. Motivated by this problem, we introduce splits of an implicational base. It is a partitioning operation of the implications which we apply recursively to obtain a binary tree representing a decomposition of the implicational base. We show that this decomposition can be conducted in polynomial time and space in the size of the input implicational base. In order to use our decomposition for the translation task, we focus on the case of acyclic splits. In this case, we obtain a recursive characterization of the meet-irreducible elements of the associated closure system. We use this characterization and hypergraph dualization to derive new results for the translation problem in acyclic convex geometries.

The Dual-Path Convolution Recurrent Network (DPCRN) was proposed to effectively exploit time-frequency domain information. By combining the DPRNN module with Convolution Recurrent Network (CRN), the DPCRN obtained a promising performance in speech separation with a limited model size. In this paper, we explore self-attention in the DPCRN module and design a model called Multi-Loss Convolutional Network with Time-Frequency Attention(MNTFA) for speech enhancement. We use self-attention modules to exploit the long-time information, where the intra-chunk self-attentions are used to model the spectrum pattern and the inter-chunk self-attention are used to model the dependence between consecutive frames. Compared to DPRNN, axial self-attention greatly reduces the need for memory and computation, which is more suitable for long sequences of speech signals. In addition, we propose a joint training method of a multi-resolution STFT loss and a WavLM loss using a pre-trained WavLM network. Experiments show that with only 0.23M parameters, the proposed model achieves a better performance than DPCRN.

We target open-world feature extrapolation problem where the feature space of input data goes through expansion and a model trained on partially observed features needs to handle new features in test data without further retraining. The problem is of much significance for dealing with features incrementally collected from different fields. To this end, we propose a new learning paradigm with graph representation and learning. Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data. Based on our framework, we design two training strategies, a self-supervised approach and an inductive learning approach, to endow the model with extrapolation ability and alleviate feature-level over-fitting. We also provide theoretical analysis on the generalization error on test data with new features, which dissects the impact of training features and algorithms on generalization performance. Our experiments over several classification datasets and large-scale advertisement click prediction datasets demonstrate that our model can produce effective embeddings for unseen features and significantly outperforms baseline methods that adopt KNN and local aggregation.

We introduce DeepNash, an autonomous agent capable of learning to play the imperfect information game Stratego from scratch, up to a human expert level. Stratego is one of the few iconic board games that Artificial Intelligence (AI) has not yet mastered. This popular game has an enormous game tree on the order of $10^{535}$ nodes, i.e., $10^{175}$ times larger than that of Go. It has the additional complexity of requiring decision-making under imperfect information, similar to Texas hold'em poker, which has a significantly smaller game tree (on the order of $10^{164}$ nodes). Decisions in Stratego are made over a large number of discrete actions with no obvious link between action and outcome. Episodes are long, with often hundreds of moves before a player wins, and situations in Stratego can not easily be broken down into manageably-sized sub-problems as in poker. For these reasons, Stratego has been a grand challenge for the field of AI for decades, and existing AI methods barely reach an amateur level of play. DeepNash uses a game-theoretic, model-free deep reinforcement learning method, without search, that learns to master Stratego via self-play. The Regularised Nash Dynamics (R-NaD) algorithm, a key component of DeepNash, converges to an approximate Nash equilibrium, instead of 'cycling' around it, by directly modifying the underlying multi-agent learning dynamics. DeepNash beats existing state-of-the-art AI methods in Stratego and achieved a yearly (2022) and all-time top-3 rank on the Gravon games platform, competing with human expert players.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

Temporal relational modeling in video is essential for human action understanding, such as action recognition and action segmentation. Although Graph Convolution Networks (GCNs) have shown promising advantages in relation reasoning on many tasks, it is still a challenge to apply graph convolution networks on long video sequences effectively. The main reason is that large number of nodes (i.e., video frames) makes GCNs hard to capture and model temporal relations in videos. To tackle this problem, in this paper, we introduce an effective GCN module, Dilated Temporal Graph Reasoning Module (DTGRM), designed to model temporal relations and dependencies between video frames at various time spans. In particular, we capture and model temporal relations via constructing multi-level dilated temporal graphs where the nodes represent frames from different moments in video. Moreover, to enhance temporal reasoning ability of the proposed model, an auxiliary self-supervised task is proposed to encourage the dilated temporal graph reasoning module to find and correct wrong temporal relations in videos. Our DTGRM model outperforms state-of-the-art action segmentation models on three challenging datasets: 50Salads, Georgia Tech Egocentric Activities (GTEA), and the Breakfast dataset. The code is available at //github.com/redwang/DTGRM.

Graph Convolutional Networks (GCNs) and their variants have experienced significant attention and have become the de facto methods for learning graph representations. GCNs derive inspiration primarily from recent deep learning approaches, and as a result, may inherit unnecessary complexity and redundant computation. In this paper, we reduce this excess complexity through successively removing nonlinearities and collapsing weight matrices between consecutive layers. We theoretically analyze the resulting linear model and show that it corresponds to a fixed low-pass filter followed by a linear classifier. Notably, our experimental evaluation demonstrates that these simplifications do not negatively impact accuracy in many downstream applications. Moreover, the resulting model scales to larger datasets, is naturally interpretable, and yields up to two orders of magnitude speedup over FastGCN.

In structure learning, the output is generally a structure that is used as supervision information to achieve good performance. Considering the interpretation of deep learning models has raised extended attention these years, it will be beneficial if we can learn an interpretable structure from deep learning models. In this paper, we focus on Recurrent Neural Networks (RNNs) whose inner mechanism is still not clearly understood. We find that Finite State Automaton (FSA) that processes sequential data has more interpretable inner mechanism and can be learned from RNNs as the interpretable structure. We propose two methods to learn FSA from RNN based on two different clustering methods. We first give the graphical illustration of FSA for human beings to follow, which shows the interpretability. From the FSA's point of view, we then analyze how the performance of RNNs are affected by the number of gates, as well as the semantic meaning behind the transition of numerical hidden states. Our results suggest that RNNs with simple gated structure such as Minimal Gated Unit (MGU) is more desirable and the transitions in FSA leading to specific classification result are associated with corresponding words which are understandable by human beings.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司