亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We are interested in the problem of translating between two representations of closure systems, namely implicational bases and meet-irreducible elements. Albeit its importance, the problem is open. Motivated by this problem, we introduce splits of an implicational base. It is a partitioning operation of the implications which we apply recursively to obtain a binary tree representing a decomposition of the implicational base. We show that this decomposition can be conducted in polynomial time and space in the size of the input implicational base. In order to use our decomposition for the translation task, we focus on the case of acyclic splits. In this case, we obtain a recursive characterization of the meet-irreducible elements of the associated closure system. We use this characterization and hypergraph dualization to derive new results for the translation problem in acyclic convex geometries.

相關內容

Stochastic inversion problems are typically encountered when it is wanted to quantify the uncertainty affecting the inputs of computer models. They consist in estimating input distributions from noisy, observable outputs, and such problems are increasingly examined in Bayesian contexts where the targeted inputs are affected by stochastic uncertainties. In this regard, a stochastic input can be qualified as meaningful if it explains most of the output uncertainty. While such inverse problems are characterized by identifiability conditions, constraints of "signal to noise", that can formalize this meaningfulness, should be accounted for within the definition of the model, prior to inference. This article investigates the possibility of forcing a solution to be meaningful in the context of parametric uncertainty quantification, through the tools of global sensitivity analysis and information theory (variance, entropy, Fisher information). Such forcings have mainly the nature of constraints placed on the input covariance, and can be made explicit by considering linear or linearizable models. Simulated experiments indicate that, when injected into the modeling process, these constraints can limit the influence of measurement or process noise on the estimation of the input distribution, and let hope for future extensions in a full non-linear framework, for example through the use of linear Gaussian mixtures.

We present the Continuous Empirical Cubature Method (CECM), a novel algorithm for empirically devising efficient integration rules. The CECM aims to improve existing cubature methods by producing rules that are close to the optimal, featuring far less points than the number of functions to integrate. The CECM consists on a two-stage strategy. First, a point selection strategy is applied for obtaining an initial approximation to the cubature rule, featuring as many points as functions to integrate. The second stage consists in a sparsification strategy in which, alongside the indexes and corresponding weights, the spatial coordinates of the points are also considered as design variables. The positions of the initially selected points are changed to render their associated weights to zero, and in this way, the minimum number of points is achieved. Although originally conceived within the framework of hyper-reduced order models (HROMs), we present the method's formulation in terms of generic vector-valued functions, thereby accentuating its versatility across various problem domains. To demonstrate the extensive applicability of the method, we conduct numerical validations using univariate and multivariate Lagrange polynomials. In these cases, we show the method's capacity to retrieve the optimal Gaussian rule. We also asses the method for an arbitrary exponential-sinusoidal function in a 3D domain, and finally consider an example of the application of the method to the hyperreduction of a multiscale finite element model, showcasing notable computational performance gains. A secondary contribution of the current paper is the Sequential Randomized SVD (SRSVD) approach for computing the Singular Value Decomposition (SVD) in a column-partitioned format. The SRSVD is particularly advantageous when matrix sizes approach memory limitations.

We investigate the product structure of hereditary graph classes admitting strongly sublinear separators. We characterise such classes as subgraphs of the strong product of a star and a complete graph of strongly sublinear size. In a more precise result, we show that if any hereditary graph class $\mathcal{G}$ admits $O(n^{1-\epsilon})$ separators, then for any fixed $\delta\in(0,\epsilon)$ every $n$-vertex graph in $\mathcal{G}$ is a subgraph of the strong product of a graph $H$ with bounded tree-depth and a complete graph of size $O(n^{1-\epsilon+\delta})$. This result holds with $\delta=0$ if we allow $H$ to have tree-depth $O(\log\log n)$. Moreover, using extensions of classical isoperimetric inequalties for grids graphs, we show the dependence on $\delta$ in our results and the above $\text{td}(H)\in O(\log\log n)$ bound are both best possible. We prove that $n$-vertex graphs of bounded treewidth are subgraphs of the product of a graph with tree-depth $t$ and a complete graph of size $O(n^{1/t})$, which is best possible. Finally, we investigate the conjecture that for any hereditary graph class $\mathcal{G}$ that admits $O(n^{1-\epsilon})$ separators, every $n$-vertex graph in $\mathcal{G}$ is a subgraph of the strong product of a graph $H$ with bounded tree-width and a complete graph of size $O(n^{1-\epsilon})$. We prove this for various classes $\mathcal{G}$ of interest.

Many mechanisms behind the evolution of cooperation, such as reciprocity, indirect reciprocity, and altruistic punishment, require group knowledge of individual actions. But what keeps people cooperating when no one is looking? Conformist norm internalization, the tendency to abide by the behavior of the majority of the group, even when it is individually harmful, could be the answer. In this paper, we analyze a world where (1) there is group selection and punishment by indirect reciprocity but (2) many actions (half) go unobserved, and therefore unpunished. Can norm internalization fill this `observation gap' and lead to high levels of cooperation, even when agents may in principle cooperate only when likely to be caught and punished? Specifically, we seek to understand whether adding norm internalization to the strategy space in a public goods game can lead to higher levels of cooperation when both norm internalization and cooperation start out rare. We found the answer to be positive, but, interestingly, not because norm internalizers end up making up a substantial fraction of the population, nor because they cooperate much more than other agent types. Instead, norm internalizers, by polarizing, catalyzing, and stabilizing cooperation, can increase levels of cooperation of other agent types, while only making up a minority of the population themselves.

Forward and inverse models are used throughout different engineering fields to predict and understand the behaviour of systems and to find parameters from a set of observations. These models use root-finding and minimisation techniques respectively to achieve their goals. This paper introduces improvements to these mathematical methods to then improve the convergence behaviour of the overarching models when used in highly non-linear systems. The performance of the new techniques is examined in detail and compared to that of the standard methods. The improved techniques are also tested with FEM models to show their practical application. Depending on the specific configuration of the problem, the improved models yielded larger convergence basins and/or took fewer steps to converge.

A physics-informed machine learning model, in the form of a multi-output Gaussian process, is formulated using the Euler-Bernoulli beam equation. Given appropriate datasets, the model can be used to regress the analytical value of the structure's bending stiffness, interpolate responses, and make probabilistic inferences on latent physical quantities. The developed model is applied on a numerically simulated cantilever beam, where the regressed bending stiffness is evaluated and the influence measurement noise on the prediction quality is investigated. Further, the regressed probabilistic stiffness distribution is used in a structural health monitoring context, where the Mahalanobis distance is employed to reason about the possible location and extent of damage in the structural system. To validate the developed framework, an experiment is conducted and measured heterogeneous datasets are used to update the assumed analytical structural model.

Kinetic approaches are generally accurate in dealing with microscale plasma physics problems but are computationally expensive for large-scale or multiscale systems. One of the long-standing problems in plasma physics is the integration of kinetic physics into fluid models, which is often achieved through sophisticated analytical closure terms. In this paper, we successfully construct a multi-moment fluid model with an implicit fluid closure included in the neural network using machine learning. The multi-moment fluid model is trained with a small fraction of sparsely sampled data from kinetic simulations of Landau damping, using the physics-informed neural network (PINN) and the gradient-enhanced physics-informed neural network (gPINN). The multi-moment fluid model constructed using either PINN or gPINN reproduces the time evolution of the electric field energy, including its damping rate, and the plasma dynamics from the kinetic simulations. In addition, we introduce a variant of the gPINN architecture, namely, gPINN$p$ to capture the Landau damping process. Instead of including the gradients of all the equation residuals, gPINN$p$ only adds the gradient of the pressure equation residual as one additional constraint. Among the three approaches, the gPINN$p$-constructed multi-moment fluid model offers the most accurate results. This work sheds light on the accurate and efficient modeling of large-scale systems, which can be extended to complex multiscale laboratory, space, and astrophysical plasma physics problems.

Stochastic processes have found numerous applications in science, as they are broadly used to model a variety of natural phenomena. Due to their intrinsic randomness and uncertainty, they are however difficult to characterize. Here, we introduce an unsupervised machine learning approach to determine the minimal set of parameters required to effectively describe the dynamics of a stochastic process. Our method builds upon an extended $\beta$-variational autoencoder architecture. By means of simulated datasets corresponding to paradigmatic diffusion models, we showcase its effectiveness in extracting the minimal relevant parameters that accurately describe these dynamics. Furthermore, the method enables the generation of new trajectories that faithfully replicate the expected stochastic behavior. Overall, our approach enables for the autonomous discovery of unknown parameters describing stochastic processes, hence enhancing our comprehension of complex phenomena across various fields.

We consider the bimodal language, where the first modality is interpreted by a binary relation in the standard way, and the second is interpreted by the relation of inequality. It follows from Hughes (1990), that in this language, non-$k$-colorability of a graph is expressible for every finite $k$. We show that modal logics of classes of non-$k$-colorable graphs (directed or non-directed), and some of their extensions, are decidable.

The developed computational approach is capable of initiating and propagating cracks inside materials and along material interfaces of general multi-domain structures under quasi-static conditions. Special attention is paid to particular situation of a solid with inhomogeneities. Description of the fracture processes are based on the theory of material damage. It introduces two independent damage parameters to distinguish between interface and internal cracks. The parameter responsible for interface cracks is defined in a thin adhesive layer of the interface and renders relation between stress and strain quantities in fashion of cohesive zone models.The second parameter is defined inside material domains and it is founded on the theory of phase-field fracture guaranteeing the material damage to occur in a thin material strip introducing a regularised model of internal cracks. Additional property of both interface and phase-field damage is their capability to distinguish between fracture modes which is useful if the structures is subjected to combined loading. The solution methodology is based on a variational approach which allows implementation of non-linear programming optimisation into standard methods of finite-element discretisation and time stepping method.Computational implementation is prepared in MATLAB whose numerical data validate developed formulation for analysis of problems of fracture in multi-domain elements of structures.

北京阿比特科技有限公司