亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present the Continuous Empirical Cubature Method (CECM), a novel algorithm for empirically devising efficient integration rules. The CECM aims to improve existing cubature methods by producing rules that are close to the optimal, featuring far less points than the number of functions to integrate. The CECM consists on a two-stage strategy. First, a point selection strategy is applied for obtaining an initial approximation to the cubature rule, featuring as many points as functions to integrate. The second stage consists in a sparsification strategy in which, alongside the indexes and corresponding weights, the spatial coordinates of the points are also considered as design variables. The positions of the initially selected points are changed to render their associated weights to zero, and in this way, the minimum number of points is achieved. Although originally conceived within the framework of hyper-reduced order models (HROMs), we present the method's formulation in terms of generic vector-valued functions, thereby accentuating its versatility across various problem domains. To demonstrate the extensive applicability of the method, we conduct numerical validations using univariate and multivariate Lagrange polynomials. In these cases, we show the method's capacity to retrieve the optimal Gaussian rule. We also asses the method for an arbitrary exponential-sinusoidal function in a 3D domain, and finally consider an example of the application of the method to the hyperreduction of a multiscale finite element model, showcasing notable computational performance gains. A secondary contribution of the current paper is the Sequential Randomized SVD (SRSVD) approach for computing the Singular Value Decomposition (SVD) in a column-partitioned format. The SRSVD is particularly advantageous when matrix sizes approach memory limitations.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

Many real-world processes have complex tail dependence structures that cannot be characterized using classical Gaussian processes. More flexible spatial extremes models exhibit appealing extremal dependence properties but are often exceedingly prohibitive to fit and simulate from in high dimensions. In this paper, we develop a new spatial extremes model that has flexible and non-stationary dependence properties, and we integrate it in the encoding-decoding structure of a variational autoencoder (XVAE), whose parameters are estimated via variational Bayes combined with deep learning. The XVAE can be used as a spatio-temporal emulator that characterizes the distribution of potential mechanistic model output states and produces outputs that have the same statistical properties as the inputs, especially in the tail. As an aside, our approach also provides a novel way of making fast inference with complex extreme-value processes. Through extensive simulation studies, we show that our XVAE is substantially more time-efficient than traditional Bayesian inference while also outperforming many spatial extremes models with a stationary dependence structure. To further demonstrate the computational power of the XVAE, we analyze a high-resolution satellite-derived dataset of sea surface temperature in the Red Sea, which includes 30 years of daily measurements at 16703 grid cells. We find that the extremal dependence strength is weaker in the interior of Red Sea and it has decreased slightly over time.

Langevin dynamics are widely used in sampling high-dimensional, non-Gaussian distributions whose densities are known up to a normalizing constant. In particular, there is strong interest in unadjusted Langevin algorithms (ULA), which directly discretize Langevin dynamics to estimate expectations over the target distribution. We study the use of transport maps that approximately normalize a target distribution as a way to precondition and accelerate the convergence of Langevin dynamics. We show that in continuous time, when a transport map is applied to Langevin dynamics, the result is a Riemannian manifold Langevin dynamics (RMLD) with metric defined by the transport map. We also show that applying a transport map to an irreversibly-perturbed ULA results in a geometry-informed irreversible perturbation (GiIrr) of the original dynamics. These connections suggest more systematic ways of learning metrics and perturbations, and also yield alternative discretizations of the RMLD described by the map, which we study. Under appropriate conditions, these discretized processes can be endowed with non-asymptotic bounds describing convergence to the target distribution in 2-Wasserstein distance. Illustrative numerical results complement our theoretical claims.

Semi-linear elliptic Partial Differential Equations (PDEs) such as the non-linear Poisson Boltzmann Equation (nPBE) is highly relevant for non-linear electrostatics in computational biology and chemistry. It is of particular importance for modeling potential fields from molecules in solvents or plasmas with stochastic fluctuations. The extensive applications include ones in condensed matter and solid state physics, chemical physics, electrochemistry, biochemistry, thermodynamics, statistical mechanics, and materials science, among others. In this paper we study the complex analytic properties of semi-linear elliptic Partial Differential Equations with respect to random fluctuations on the domain. We first prove the existence and uniqueness of the nPBE on a bounded domain in $\mathbb{R}^3$. This proof relies on the application of a contraction mapping reasoning, as the standard convex optimization argument for the deterministic nPBE no longer applies. Using the existence and uniqueness result we subsequently show that solution to the nPBE admits an analytic extension onto a well defined region in the complex hyperplane with respect to the number of stochastic variables. Due to the analytic extension, stochastic collocation theory for sparse grids predict algebraic to sub-exponential convergence rates with respect to the number of knots. A series of numerical experiments with sparse grids is consistent with this prediction and the analyticity result. Finally, this approach readily extends to a wide class of semi-linear elliptic PDEs.

The Multiscale Hierarchical Decomposition Method (MHDM) was introduced as an iterative method for total variation regularization, with the aim of recovering details at various scales from images corrupted by additive or multiplicative noise. Given its success beyond image restoration, we extend the MHDM iterates in order to solve larger classes of linear ill-posed problems in Banach spaces. Thus, we define the MHDM for more general convex or even non-convex penalties, and provide convergence results for the data fidelity term. We also propose a flexible version of the method using adaptive convex functionals for regularization, and show an interesting multiscale decomposition of the data. This decomposition result is highlighted for the Bregman iteration method that can be expressed as an adaptive MHDM. Furthermore, we state necessary and sufficient conditions when the MHDM iteration agrees with the variational Tikhonov regularization, which is the case, for instance, for one-dimensional total variation denoising. Finally, we investigate several particular instances and perform numerical experiments that point out the robust behavior of the MHDM.

The Linguistic Matrix Theory programme introduced by Kartsaklis, Ramgoolam and Sadrzadeh is an approach to the statistics of matrices that are generated in type-driven distributional semantics, based on permutation invariant polynomial functions which are regarded as the key observables encoding the significant statistics. In this paper we generalize the previous results on the approximate Gaussianity of matrix distributions arising from compositional distributional semantics. We also introduce a geometry of observable vectors for words, defined by exploiting the graph-theoretic basis for the permutation invariants and the statistical characteristics of the ensemble of matrices associated with the words. We describe successful applications of this unified framework to a number of tasks in computational linguistics, associated with the distinctions between synonyms, antonyms, hypernyms and hyponyms.

A non-intrusive proper generalized decomposition (PGD) strategy, coupled with an overlapping domain decomposition (DD) method, is proposed to efficiently construct surrogate models of parametric linear elliptic problems. A parametric multi-domain formulation is presented, with local subproblems featuring arbitrary Dirichlet interface conditions represented through the traces of the finite element functions used for spatial discretization at the subdomain level, with no need for additional auxiliary basis functions. The linearity of the operator is exploited to devise low-dimensional problems with only few active boundary parameters. An overlapping Schwarz method is used to glue the local surrogate models, solving a linear system for the nodal values of the parametric solution at the interfaces, without introducing Lagrange multipliers to enforce the continuity in the overlapping region. The proposed DD-PGD methodology relies on a fully algebraic formulation allowing for real-time computation based on the efficient interpolation of the local surrogate models in the parametric space, with no additional problems to be solved during the execution of the Schwarz algorithm. Numerical results for parametric diffusion and convection-diffusion problems are presented to showcase the accuracy of the DD-PGD approach, its robustness in different regimes and its superior performance with respect to standard high-fidelity DD methods.

The action of a noise operator on a code transforms it into a distribution on the respective space. Some common examples from information theory include Bernoulli noise acting on a code in the Hamming space and Gaussian noise acting on a lattice in the Euclidean space. We aim to characterize the cases when the output distribution is close to the uniform distribution on the space, as measured by R\'enyi divergence of order $\alpha \in (1,\infty]$. A version of this question is known as the channel resolvability problem in information theory, and it has implications for security guarantees in wiretap channels, error correction, discrepancy, worst-to-average case complexity reductions, and many other problems. Our work quantifies the requirements for asymptotic uniformity (perfect smoothing) and identifies explicit code families that achieve it under the action of the Bernoulli and ball noise operators on the code. We derive expressions for the minimum rate of codes required to attain asymptotically perfect smoothing. In proving our results, we leverage recent results from harmonic analysis of functions on the Hamming space. Another result pertains to the use of code families in Wyner's transmission scheme on the binary wiretap channel. We identify explicit families that guarantee strong secrecy when applied in this scheme, showing that nested Reed-Muller codes can transmit messages reliably and securely over a binary symmetric wiretap channel with a positive rate. Finally, we establish a connection between smoothing and error correction in the binary symmetric channel.

The problem of sequential anomaly detection and identification is considered in the presence of a sampling constraint. Specifically, multiple data streams are generated by distinct sources and the goal is to quickly identify those that exhibit ``anomalous'' behavior, when it is not possible to sample every source at each time instant. Thus, in addition to a stopping rule, which determines when to stop sampling, and a decision rule, which indicates which sources to identify as anomalous upon stopping, one needs to specify a sampling rule that determines which sources to sample at each time instant. The focus of this work is on ordering sampling rules, which sample the data sources, among those currently estimated as anomalous (resp. non-anomalous), for which the corresponding local test statistics have the smallest (resp. largest) values. It is shown that with an appropriate design, which is specified explicitly, an ordering sampling rule leads to the optimal expected time for stopping, among all policies that satisfy the same sampling and error constraints, to a first-order asymptotic approximation as the false positive and false negative error rates under control both go to zero. This is the first asymptotic optimality result for ordering sampling rules when multiple sources can be sampled per time instant. Moreover, this is established under a general setup where the number of anomalies is not required to be a priori known. A novel proof technique is introduced, which unifies different versions of the problem regarding the homogeneity of the sources and prior information on the number of anomalies.

This note presents a refined local approximation for the logarithm of the ratio between the negative multinomial probability mass function and a multivariate normal density, both having the same mean-covariance structure. This approximation, which is derived using Stirling's formula and a meticulous treatment of Taylor expansions, yields an upper bound on the Hellinger distance between the jittered negative multinomial distribution and the corresponding multivariate normal distribution. Upper bounds on the Le Cam distance between negative multinomial and multivariate normal experiments ensue.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

北京阿比特科技有限公司