亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Contrastive Language-Image Pre-training (CLIP) plays an essential role in extracting valuable content information from images across diverse tasks. It aligns textual and visual modalities to comprehend the entire image, including all the details, even those irrelevant to specific tasks. However, for a finer understanding and controlled editing of images, it becomes crucial to focus on specific regions of interest, which can be indicated as points, masks, or boxes by humans or perception models. To fulfill the requirements, we introduce Alpha-CLIP, an enhanced version of CLIP with an auxiliary alpha channel to suggest attentive regions and fine-tuned with constructed millions of RGBA region-text pairs. Alpha-CLIP not only preserves the visual recognition ability of CLIP but also enables precise control over the emphasis of image contents. It demonstrates effectiveness in various tasks, including but not limited to open-world recognition, multimodal large language models, and conditional 2D / 3D generation. It has a strong potential to serve as a versatile tool for image-related tasks.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 推斷 · Extensibility · INFORMS · HTTPS ·
2024 年 1 月 29 日

Neural style transfer (NST) has evolved significantly in recent years. Yet, despite its rapid progress and advancement, existing NST methods either struggle to transfer aesthetic information from a style effectively or suffer from high computational costs and inefficiencies in feature disentanglement due to using pre-trained models. This work proposes a lightweight but effective model, AesFA -- Aesthetic Feature-Aware NST. The primary idea is to decompose the image via its frequencies to better disentangle aesthetic styles from the reference image while training the entire model in an end-to-end manner to exclude pre-trained models at inference completely. To improve the network's ability to extract more distinct representations and further enhance the stylization quality, this work introduces a new aesthetic feature: contrastive loss. Extensive experiments and ablations show the approach not only outperforms recent NST methods in terms of stylization quality, but it also achieves faster inference. Codes are available at //github.com/Sooyyoungg/AesFA.

Target speaker extraction (TSE) aims to extract the target speaker's voice from the input mixture. Previous studies have concentrated on high-overlapping scenarios. However, real-world applications usually meet more complex scenarios like variable speaker overlapping and target speaker absence. In this paper, we introduces a framework to perform continuous TSE (C-TSE), comprising a target speaker voice activation detection (TSVAD) and a TSE model. This framework significantly improves TSE performance on similar speakers and enhances personalization, which is lacking in traditional diarization methods. In detail, unlike conventional TSVAD deployed to refine the diarization results, the proposed Attention-target speaker voice activation detection (A-TSVAD) directly generates timestamps of the target speaker. We also explore some different integration methods of A-TSVAD and TSE by comparing the cascaded and parallel methods. The framework's effectiveness is assessed using a range of metrics, including diarization and enhancement metrics. Our experiments demonstrate that A-TSVAD outperforms conventional methods in reducing diarization errors. Furthermore, the integration of A-TSVAD and TSE in a sequential cascaded manner further enhances extraction accuracy.

Model interpretability plays a central role in human-AI decision-making systems. Ideally, explanations should be expressed using human-interpretable semantic concepts. Moreover, the causal relations between these concepts should be captured by the explainer to allow for reasoning about the explanations. Lastly, explanation methods should be efficient and not compromise the performance of the predictive task. Despite the rapid advances in AI explainability in recent years, as far as we know to date, no method fulfills these three properties. Indeed, mainstream methods for local concept explainability do not produce causal explanations and incur a trade-off between explainability and prediction performance. We present DiConStruct, an explanation method that is both concept-based and causal, with the goal of creating more interpretable local explanations in the form of structural causal models and concept attributions. Our explainer works as a distillation model to any black-box machine learning model by approximating its predictions while producing the respective explanations. Because of this, DiConStruct generates explanations efficiently while not impacting the black-box prediction task. We validate our method on an image dataset and a tabular dataset, showing that DiConStruct approximates the black-box models with higher fidelity than other concept explainability baselines, while providing explanations that include the causal relations between the concepts.

Fairness in Graph Convolutional Neural Networks (GCNs) becomes a more and more important concern as GCNs are adopted in many crucial applications. Societal biases against sensitive groups may exist in many real world graphs. GCNs trained on those graphs may be vulnerable to being affected by such biases. In this paper, we adopt the well-known fairness notion of demographic parity and tackle the challenge of training fair and accurate GCNs efficiently. We present an in-depth analysis on how graph structure bias, node attribute bias, and model parameters may affect the demographic parity of GCNs. Our insights lead to FairSample, a framework that jointly mitigates the three types of biases. We employ two intuitive strategies to rectify graph structures. First, we inject edges across nodes that are in different sensitive groups but similar in node features. Second, to enhance model fairness and retain model quality, we develop a learnable neighbor sampling policy using reinforcement learning. To address the bias in node features and model parameters, FairSample is complemented by a regularization objective to optimize fairness.

We propose Masked-Attention Transformers for Surgical Instrument Segmentation (MATIS), a two-stage, fully transformer-based method that leverages modern pixel-wise attention mechanisms for instrument segmentation. MATIS exploits the instance-level nature of the task by employing a masked attention module that generates and classifies a set of fine instrument region proposals. Our method incorporates long-term video-level information through video transformers to improve temporal consistency and enhance mask classification. We validate our approach in the two standard public benchmarks, Endovis 2017 and Endovis 2018. Our experiments demonstrate that MATIS' per-frame baseline outperforms previous state-of-the-art methods and that including our temporal consistency module boosts our model's performance further.

This paper presents MoE-Infinity, a cost-efficient mixture-of-expert (MoE) serving system that realizes activation-aware expert offloading. MoE-Infinity features sequence-level expert activation tracing, a new approach adept at identifying sparse activations and capturing the temporal locality of MoE inference. By analyzing these traces, MoE-Infinity performs novel activation-aware expert prefetching and caching, substantially reducing the latency overheads usually associated with offloading experts for improved cost performance. Extensive experiments in a cluster show that MoE-Infinity outperforms numerous existing systems and approaches, reducing latency by 4 - 20X and decreasing deployment costs by over 8X for various MoEs. MoE-Infinity's source code is publicly available at //github.com/TorchMoE/MoE-Infinity

Large Language Models (LLMs) have shown prominent performance in various downstream tasks in which prompt engineering plays a pivotal role in optimizing LLMs' performance. This paper, not as an overview of current prompt engineering methods, aims to highlight the limitation of designing prompts while holding an anthropomorphic assumption that expects LLMs to think like humans. From our review of 35 representative studies, we demonstrate that a goal-oriented prompt formulation, which guides LLMs to follow established human logical thinking, significantly improves the performance of LLMs. Furthermore, We introduce a novel taxonomy that categorizes goal-oriented prompting methods into five interconnected stages and we demonstrate the broad applicability of our framework by summarizing ten applicable tasks. With four future directions proposed, we hope to further emphasize and promote goal-oriented prompt engineering.

Data plays a fundamental role in the training of Large Language Models (LLMs). Effective data management, particularly in the formulation of a well-suited training dataset, holds significance for enhancing model performance and improving training efficiency during pretraining and supervised fine-tuning phases. Despite the considerable importance of data management, the current research community still falls short in providing a systematic analysis of the rationale behind management strategy selection, its consequential effects, methodologies for evaluating curated datasets, and the ongoing pursuit of improved strategies. Consequently, the exploration of data management has attracted more and more attention among the research community. This survey provides a comprehensive overview of current research in data management within both the pretraining and supervised fine-tuning stages of LLMs, covering various noteworthy aspects of data management strategy design: data quantity, data quality, domain/task composition, etc. Looking toward the future, we extrapolate existing challenges and outline promising directions for development in this field. Therefore, this survey serves as a guiding resource for practitioners aspiring to construct powerful LLMs through effective data management practices. The collection of the latest papers is available at //github.com/ZigeW/data_management_LLM.

We present CURL: Contrastive Unsupervised Representations for Reinforcement Learning. CURL extracts high-level features from raw pixels using contrastive learning and performs off-policy control on top of the extracted features. CURL outperforms prior pixel-based methods, both model-based and model-free, on complex tasks in the DeepMind Control Suite and Atari Games showing 1.9x and 1.6x performance gains at the 100K environment and interaction steps benchmarks respectively. On the DeepMind Control Suite, CURL is the first image-based algorithm to nearly match the sample-efficiency and performance of methods that use state-based features.

We propose UniViLM: a Unified Video and Language pre-training Model for multimodal understanding and generation. Motivated by the recent success of BERT based pre-training technique for NLP and image-language tasks, VideoBERT and CBT are proposed to exploit BERT model for video and language pre-training using narrated instructional videos. Different from their works which only pre-train understanding task, we propose a unified video-language pre-training model for both understanding and generation tasks. Our model comprises of 4 components including two single-modal encoders, a cross encoder and a decoder with the Transformer backbone. We first pre-train our model to learn the universal representation for both video and language on a large instructional video dataset. Then we fine-tune the model on two multimodal tasks including understanding task (text-based video retrieval) and generation task (multimodal video captioning). Our extensive experiments show that our method can improve the performance of both understanding and generation tasks and achieves the state-of-the art results.

北京阿比特科技有限公司