We derive exact reconstruction methods for cracks consisting of unions of Lipschitz hypersurfaces in the context of Calder\'on's inverse conductivity problem. Our first method obtains upper bounds for the unknown cracks, bounds that can be shrunk to obtain the exact crack locations upon verifying certain operator inequalities for differences of the local Neumann-to-Dirichlet maps. This method can simultaneously handle perfectly insulating and perfectly conducting cracks, and it appears to be the first rigorous reconstruction method capable of this. Our second method assumes that only perfectly insulating cracks or only perfectly conducting cracks are present. Once more using operator inequalities, this method generates approximate cracks that are guaranteed to be subsets of the unknown cracks that are being reconstructed.
We develop a new model for spatial random field reconstruction of a binary-valued spatial phenomenon. In our model, sensors are deployed in a wireless sensor network across a large geographical region. Each sensor measures a non-Gaussian inhomogeneous temporal process which depends on the spatial phenomenon. Two types of sensors are employed: one collects point observations at specific time points, while the other collects integral observations over time intervals. Subsequently, the sensors transmit these time-series observations to a Fusion Center (FC), and the FC infers the spatial phenomenon from these observations. We show that the resulting posterior predictive distribution is intractable and develop a tractable two-step procedure to perform inference. Firstly, we develop algorithms to perform approximate Likelihood Ratio Tests on the time-series observations, compressing them to a single bit for both point sensors and integral sensors. Secondly, once the compressed observations are transmitted to the FC, we utilize a Spatial Best Linear Unbiased Estimator (S-BLUE) to reconstruct the binary spatial random field at any desired spatial location. The performance of the proposed approach is studied using simulation. We further illustrate the effectiveness of our method using a weather dataset from the National Environment Agency (NEA) of Singapore with fields including temperature and relative humidity.
Model specification searches and modifications are commonly employed in covariance structure analysis (CSA) or structural equation modeling (SEM) to improve the goodness-of-fit. However, these practices can be susceptible to capitalizing on chance, as a model that fits one sample may not generalize to another sample from the same population. This paper introduces the improved Lagrange Multipliers (LM) test, which provides a reliable method for conducting a thorough model specification search and effectively identifying missing parameters. By leveraging the stepwise bootstrap method in the standard LM and Wald tests, our data-driven approach enhances the accuracy of parameter identification. The results from Monte Carlo simulations and two empirical applications in political science demonstrate the effectiveness of the improved LM test, particularly when dealing with small sample sizes and models with large degrees of freedom. This approach contributes to better statistical fit and addresses the issue of capitalization on chance in model specification.
In this article we propose two finite element schemes for the Navier-Stokes equations, based on a reformulation that involves differential operators from the de Rham sequence and an advection operator with explicit skew-symmetry in weak form. Our first scheme is obtained by discretizing this formulation with conforming FEEC (Finite Element Exterior Calculus) spaces: it preserves the pointwise divergence free constraint of the velocity, its total momentum and its energy, in addition to being pressure robust. Following the broken-FEEC approach, our second scheme uses fully discontinuous spaces and local conforming projections to define the discrete differential operators. It preserves the same invariants up to a dissipation of energy to stabilize numerical discontinuities. For both schemes we use a middle point time discretization which preserve these invariants at the fully discrete level and we analyse its well-posedness in terms of a CFL condition. Numerical test cases performed with spline finite elements allow us to verify the high order accuracy of the resulting numerical methods, as well as their ability to handle general boundary conditions.
In the permutation inversion problem, the task is to find the preimage of some challenge value, given oracle access to the permutation. This is a fundamental problem in query complexity, and appears in many contexts, particularly cryptography. In this work, we examine the setting in which the oracle allows for quantum queries to both the forward and the inverse direction of the permutation -- except that the challenge value cannot be submitted to the latter. Within that setting, we consider two options for the inversion algorithm: whether it can get quantum advice about the permutation, and whether it must produce the entire preimage (search) or only the first bit (decision). We prove several theorems connecting the hardness of the resulting variations of the inversion problem, and establish a number of lower bounds. Our results indicate that, perhaps surprisingly, the inversion problem does not become significantly easier when the adversary is granted oracle access to the inverse, provided it cannot query the challenge itself.
This paper presents a novel approach to Bayesian nonparametric spectral analysis of stationary multivariate time series. Starting with a parametric vector-autoregressive model, the parametric likelihood is nonparametrically adjusted in the frequency domain to account for potential deviations from parametric assumptions. We show mutual contiguity of the nonparametrically corrected likelihood, the multivariate Whittle likelihood approximation and the exact likelihood for Gaussian time series. A multivariate extension of the nonparametric Bernstein-Dirichlet process prior for univariate spectral densities to the space of Hermitian positive definite spectral density matrices is specified directly on the correction matrices. An infinite series representation of this prior is then used to develop a Markov chain Monte Carlo algorithm to sample from the posterior distribution. The code is made publicly available for ease of use and reproducibility. With this novel approach we provide a generalization of the multivariate Whittle-likelihood-based method of Meier et al. (2020) as well as an extension of the nonparametrically corrected likelihood for univariate stationary time series of Kirch et al. (2019) to the multivariate case. We demonstrate that the nonparametrically corrected likelihood combines the efficiencies of a parametric with the robustness of a nonparametric model. Its numerical accuracy is illustrated in a comprehensive simulation study. We illustrate its practical advantages by a spectral analysis of two environmental time series data sets: a bivariate time series of the Southern Oscillation Index and fish recruitment and time series of windspeed data at six locations in California.
We propose a model to flexibly estimate joint tail properties by exploiting the convergence of an appropriately scaled point cloud onto a compact limit set. Characteristics of the shape of the limit set correspond to key tail dependence properties. We directly model the shape of the limit set using B\'ezier splines, which allow flexible and parsimonious specification of shapes in two dimensions. We then fit the B\'ezier splines to data in pseudo-polar coordinates using Markov chain Monte Carlo, utilizing a limiting approximation to the conditional likelihood of the radii given angles. By imposing appropriate constraints on the parameters of the B\'ezier splines, we guarantee that each posterior sample is a valid limit set boundary, allowing direct posterior analysis of any quantity derived from the shape of the curve. Furthermore, we obtain interpretable inference on the asymptotic dependence class by using mixture priors with point masses on the corner of the unit box. Finally, we apply our model to bivariate datasets of extremes of variables related to fire risk and air pollution.
This paper presents a novel, efficient, high-order accurate, and stable spectral element-based model for computing the complete three-dimensional linear radiation and diffraction problem for floating offshore structures. We present a solution to a pseudo-impulsive formulation in the time domain, where the frequency-dependent quantities, such as added mass, radiation damping, and wave excitation force for arbitrary heading angle, $\beta$, are evaluated using Fourier transforms from the tailored time-domain responses. The spatial domain is tessellated by an unstructured high-order hybrid configured mesh and represented by piece-wise polynomial basis functions in the spectral element space. Fourth-order accurate time integration is employed through an explicit four-stage Runge-Kutta method and complemented by fourth-order finite difference approximations for time differentiation. To reduce the computational burden, the model can make use of symmetry boundaries in the domain representation. The key piece of the numerical model -- the discrete Laplace solver -- is validated through $p$- and $h$-convergence studies. Moreover, to highlight the capabilities of the proposed model, we present prof-of-concept examples of simple floating bodies (a sphere and a box). Lastly, a much more involved case is performed of an oscillating water column, including generalized modes resembling the piston motion and wave sloshing effects inside the wave energy converter chamber. In this case, the spectral element model trivially computes the infinite-frequency added mass, which is a singular problem for conventional boundary element type solvers.
Full waveform inversion (FWI) has the potential to provide high-resolution subsurface model estimations. However, due to limitations in observation, e.g., regional noise, limited shots or receivers, and band-limited data, it is hard to obtain the desired high-resolution model with FWI. To address this challenge, we propose a new paradigm for FWI regularized by generative diffusion models. Specifically, we pre-train a diffusion model in a fully unsupervised manner on a prior velocity model distribution that represents our expectations of the subsurface and then adapt it to the seismic observations by incorporating the FWI into the sampling process of the generative diffusion models. What makes diffusion models uniquely appropriate for such an implementation is that the generative process retains the form and dimensions of the velocity model. Numerical examples demonstrate that our method can outperform the conventional FWI with only negligible additional computational cost. Even in cases of very sparse observations or observations with strong noise, the proposed method could still reconstruct a high-quality subsurface model. Thus, we can incorporate our prior expectations of the solutions in an efficient manner. We further test this approach on field data, which demonstrates the effectiveness of the proposed method.
In order to overcome the expressive limitations of graph neural networks (GNNs), we propose the first method that exploits vector flows over graphs to develop globally consistent directional and asymmetric aggregation functions. We show that our directional graph networks (DGNs) generalize convolutional neural networks (CNNs) when applied on a grid. Whereas recent theoretical works focus on understanding local neighbourhoods, local structures and local isomorphism with no global information flow, our novel theoretical framework allows directional convolutional kernels in any graph. First, by defining a vector field in the graph, we develop a method of applying directional derivatives and smoothing by projecting node-specific messages into the field. Then we propose the use of the Laplacian eigenvectors as such vector field, and we show that the method generalizes CNNs on an n-dimensional grid, and is provably more discriminative than standard GNNs regarding the Weisfeiler-Lehman 1-WL test. Finally, we bring the power of CNN data augmentation to graphs by providing a means of doing reflection, rotation and distortion on the underlying directional field. We evaluate our method on different standard benchmarks and see a relative error reduction of 8\% on the CIFAR10 graph dataset and 11% to 32% on the molecular ZINC dataset. An important outcome of this work is that it enables to translate any physical or biological problems with intrinsic directional axes into a graph network formalism with an embedded directional field.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.