It has been observed by several authors that well-known periodization strategies like tent or Chebychev transforms lead to remarkable results for the recovery of multivariate functions from few samples. So far, theoretical guarantees are missing. The goal of this paper is twofold. On the one hand, we give such guarantees and briefly describe the difficulties of the involved proof. On the other hand, we combine these periodization strategies with recent novel constructive methods for the efficient subsampling of finite frames in $\mathbb{C}$. As a result we are able to reconstruct non-periodic multivariate functions from very few samples. The used sampling nodes are the result of a two-step procedure. Firstly, a random draw with respect to the Chebychev measure provides an initial node set. A further sparsification technique selects a significantly smaller subset of these nodes with equal approximation properties. This set of sampling nodes scales linearly in the dimension of the subspace on which we project and works universally for the whole class of functions. The method is based on principles developed by Batson, Spielman, and Srivastava and can be numerically implemented. Samples on these nodes are then used in a (plain) least-squares sampling recovery step on a suitable hyperbolic cross subspace of functions resulting in a near-optimal behavior of the sampling error. Numerical experiments indicate the applicability of our results.
The imposition of inhomogeneous Dirichlet (essential) boundary conditions is a fundamental challenge in the application of Galerkin-type methods based on non-interpolatory functions, i.e., functions which do not possess the Kronecker delta property. Such functions typically are used in various meshfree methods, as well as methods based on the isogeometric paradigm. The present paper analyses a model problem consisting of the Poisson equation subject to non-standard boundary conditions. Namely, instead of classical boundary conditions, the model problem involves Dirichlet- and Neumann-type nonlocal boundary conditions. Variational formulations with strongly and weakly imposed inhomogeneous Dirichlet-type nonlocal conditions are derived and compared within an extensive numerical study in the isogeometric framework based on non-uniform rational B-splines (NURBS). The attention in the numerical study is paid mainly to the influence of the nonlocal boundary conditions on the properties of the considered discretisation methods.
Learning distance functions between complex objects, such as the Wasserstein distance to compare point sets, is a common goal in machine learning applications. However, functions on such complex objects (e.g., point sets and graphs) are often required to be invariant to a wide variety of group actions e.g. permutation or rigid transformation. Therefore, continuous and symmetric product functions (such as distance functions) on such complex objects must also be invariant to the product of such group actions. We call these functions symmetric and factor-wise group invariant (or SFGI functions in short). In this paper, we first present a general neural network architecture for approximating SFGI functions. The main contribution of this paper combines this general neural network with a sketching idea to develop a specific and efficient neural network which can approximate the $p$-th Wasserstein distance between point sets. Very importantly, the required model complexity is independent of the sizes of input point sets. On the theoretical front, to the best of our knowledge, this is the first result showing that there exists a neural network with the capacity to approximate Wasserstein distance with bounded model complexity. Our work provides an interesting integration of sketching ideas for geometric problems with universal approximation of symmetric functions. On the empirical front, we present a range of results showing that our newly proposed neural network architecture performs comparatively or better than other models (including a SOTA Siamese Autoencoder based approach). In particular, our neural network generalizes significantly better and trains much faster than the SOTA Siamese AE. Finally, this line of investigation could be useful in exploring effective neural network design for solving a broad range of geometric optimization problems (e.g., $k$-means in a metric space).
This paper presents a new approach to construct regularizing operators for the inversion of noisy Laplace transforms known as a set of data points on the real axis. The effectiveness of the proposed approach is demonstrated through examples of noisy Laplace transform inversions and the deconvolution of nuclear magnetic resonance relaxation data, including experimentally measured data. The software implementation of this method allows for enforcing the positivity of the solution without requiring any additional information.
In recent years, there has been a growing interest in understanding complex microstructures and their effect on macroscopic properties. In general, it is difficult to derive an effective constitutive law for such microstructures with reasonable accuracy and meaningful parameters. One numerical approach to bridge the scales is computational homogenization, in which a microscopic problem is solved at every macroscopic point, essentially replacing the effective constitutive model. Such approaches are, however, computationally expensive and typically infeasible in multi-query contexts such as optimization and material design. To render these analyses tractable, surrogate models that can accurately approximate and accelerate the microscopic problem over a large design space of shapes, material and loading parameters are required. In previous works, such models were constructed in a data-driven manner using methods such as Neural Networks (NN) or Gaussian Process Regression (GPR). However, these approaches currently suffer from issues, such as need for large amounts of training data, lack of physics, and considerable extrapolation errors. In this work, we develop a reduced order model based on Proper Orthogonal Decomposition (POD), Empirical Cubature Method (ECM) and a geometrical transformation method with the following key features: (i) large shape variations of the microstructure are captured, (ii) only relatively small amounts of training data are necessary, and (iii) highly non-linear history-dependent behaviors are treated. The proposed framework is tested and examined in two numerical examples, involving two scales and large geometrical variations. In both cases, high speed-ups and accuracies are achieved while observing good extrapolation behavior.
Hopfield networks are an attractive choice for solving many types of computational problems because they provide a biologically plausible mechanism. The Self-Optimization (SO) model adds to the Hopfield network by using a biologically founded Hebbian learning rule, in combination with repeated network resets to arbitrary initial states, for optimizing its own behavior towards some desirable goal state encoded in the network. In order to better understand that process, we demonstrate first that the SO model can solve concrete combinatorial problems in SAT form, using two examples of the Liars problem and the map coloring problem. In addition, we show how under some conditions critical information might get lost forever with the learned network producing seemingly optimal solutions that are in fact inappropriate for the problem it was tasked to solve. What appears to be an undesirable side-effect of the SO model, can provide insight into its process for solving intractable problems.
Stabbing Planes (also known as Branch and Cut) is a proof system introduced very recently which, informally speaking, extends the DPLL method by branching on integer linear inequalities instead of single variables. The techniques known so far to prove size and depth lower bounds for Stabbing Planes are generalizations of those used for the Cutting Planes proof system. For size lower bounds these are established by monotone circuit arguments, while for depth these are found via communication complexity and protection. As such these bounds apply for lifted versions of combinatorial statements. Rank lower bounds for Cutting Planes are also obtained by geometric arguments called protection lemmas. In this work we introduce two new geometric approaches to prove size/depth lower bounds in Stabbing Planes working for any formula: (1) the antichain method, relying on Sperner's Theorem and (2) the covering method which uses results on essential coverings of the boolean cube by linear polynomials, which in turn relies on Alon's combinatorial Nullenstellensatz. We demonstrate their use on classes of combinatorial principles such as the Pigeonhole principle, the Tseitin contradictions and the Linear Ordering Principle. By the first method we prove almost linear size lower bounds and optimal logarithmic depth lower bounds for the Pigeonhole principle and analogous lower bounds for the Tseitin contradictions over the complete graph and for the Linear Ordering Principle. By the covering method we obtain a superlinear size lower bound and a logarithmic depth lower bound for Stabbing Planes proof of Tseitin contradictions over a grid graph.
This article introduces a new Neural Network stochastic model to generate a 1-dimensional stochastic field with turbulent velocity statistics. Both the model architecture and training procedure ground on the Kolmogorov and Obukhov statistical theories of fully developed turbulence, so guaranteeing descriptions of 1) energy distribution, 2) energy cascade and 3) intermittency across scales in agreement with experimental observations. The model is a Generative Adversarial Network with multiple multiscale optimization criteria. First, we use three physics-based criteria: the variance, skewness and flatness of the increments of the generated field that retrieve respectively the turbulent energy distribution, energy cascade and intermittency across scales. Second, the Generative Adversarial Network criterion, based on reproducing statistical distributions, is used on segments of different length of the generated field. Furthermore, to mimic multiscale decompositions frequently used in turbulence's studies, the model architecture is fully convolutional with kernel sizes varying along the multiple layers of the model. To train our model we use turbulent velocity signals from grid turbulence at Modane wind tunnel.
Proximal nested sampling was introduced recently to open up Bayesian model selection for high-dimensional problems such as computational imaging. The framework is suitable for models with a log-convex likelihood, which are ubiquitous in the imaging sciences. The purpose of this article is two-fold. First, we review proximal nested sampling in a pedagogical manner in an attempt to elucidate the framework for physical scientists. Second, we show how proximal nested sampling can be extended in an empirical Bayes setting to support data-driven priors, such as deep neural networks learned from training data.
We consider parametrized linear-quadratic optimal control problems and provide their online-efficient solutions by combining greedy reduced basis methods and machine learning algorithms. To this end, we first extend the greedy control algorithm, which builds a reduced basis for the manifold of optimal final time adjoint states, to the setting where the objective functional consists of a penalty term measuring the deviation from a desired state and a term describing the control energy. Afterwards, we apply machine learning surrogates to accelerate the online evaluation of the reduced model. The error estimates proven for the greedy procedure are further transferred to the machine learning models and thus allow for efficient a posteriori error certification. We discuss the computational costs of all considered methods in detail and show by means of two numerical examples the tremendous potential of the proposed methodology.
The notions and certain fundamental characteristics of the proximal and limiting normal cones with respect to a set are first presented in this paper. We present the ideas of the limiting coderivative and subdifferential with respect to a set of multifunctions and singleton mappings, respectively, based on these normal cones. The necessary and sufficient conditions for the Aubin property with respect to a set of multifunctions are then described by using the limiting coderivative with respect to a set. As a result of the limiting subdifferential with respect to a set, we offer the requisite optimality criteria for local solutions to optimization problems. In addition, we also provide examples to demonstrate the outcomes.