亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Private set intersection (PSI) aims to allow users to find out the commonly shared items among the users without revealing other membership information. The most recently proposed approach to PSI in the database community was Prism, which is built upon secret sharing and the assumption that multiple non-colluding servers are available. One limitation of Prism lies in its semantic security: the encoding on the servers is deterministic, implying that the scheme cannot be indistinguishable under a chosen-plaintext attack (IND-CPA). This paper extends the original PSI scheme of Prism by two orthogonal primitives, namely Kaleido-RND and Kaleido-AES: the former exhibits highly efficient performance with randomized encoding and the latter is provably secure under CPA attacks with more computational overhead. A system prototype is implemented and deployed on a 34-node cluster of SQLite instances. Extensive experiments on the TPC-H benchmark and three real-world applications confirm the effectiveness of the proposed Kaleido primitives.

相關內容

Many deployments of differential privacy in industry are in the local model, where each party releases its private information via a differentially private randomizer. We study triangle counting in the noninteractive and interactive local model with edge differential privacy (that, intuitively, requires that the outputs of the algorithm on graphs that differ in one edge be indistinguishable). In this model, each party's local view consists of the adjacency list of one vertex. In the noninteractive model, we prove that additive $\Omega(n^2)$ error is necessary, where $n$ is the number of nodes. This lower bound is our main technical contribution. It uses a reconstruction attack with a new class of linear queries and a novel mix-and-match strategy of running the local randomizers with different completions of their adjacency lists. It matches the additive error of the algorithm based on Randomized Response, proposed by Imola, Murakami and Chaudhuri (USENIX2021) and analyzed by Imola, Murakami and Chaudhuri (CCS2022) for constant $\varepsilon$. We use a different postprocessing of Randomized Response and provide tight bounds on the variance of the resulting algorithm. In the interactive setting, we prove a lower bound of $\Omega(n^{3/2})$ on the additive error. Previously, no hardness results were known for interactive, edge-private algorithms in the local model, except for those that follow trivially from the results for the central model. Our work significantly improves on the state of the art in differentially private graph analysis in the local model.

This work introduces a new perspective for physical media sharing in multiuser communication by jointly considering (i) the meaning of the transmitted message and (ii) its function at the end user. Specifically, we have defined a scenario where multiple users (sensors) are continuously transmitting their own states concerning a predetermined event. On the receiver side there is an alarm monitoring system, whose function is to decide whether such a predetermined event has happened in a certain time period and, if yes, in which user. The media access control protocol proposed constitutes an alternative approach to the conventional physical layer methods, because the receiver does not decode the received waveform directly; rather, the relative position of the absence or presence of energy within a multidimensional resource space carries the (semantic) information. The protocol introduced here provides high efficiency in multiuser networks that operate with event-triggered sampling by enabling a constructive reconstruction of transmission collisions. We have demonstrated that the proposed method leads to a better event transmission efficiency than conventional methods like TDMA and slotted ALOHA. Remarkably, the proposed method achieves 100\% efficiency and 0\% error probability in almost all the studied cases, while consistently outperforming TDMA and slotted ALOHA.

Logic locking protects the integrity of hardware designs throughout the integrated circuit supply chain. However, recent machine learning (ML)-based attacks have challenged its fundamental security, initiating the requirement for the design of learning-resilient locking policies. A promising ML-resilient locking mechanism hides within multiplexer-based locking. Nevertheless, recent attacks have successfully breached these state-of-the-art locking schemes, making it ever more complex to manually design policies that are resilient to all existing attacks. In this project, for the first time, we propose the automatic design exploration of logic locking with evolutionary computation (EC) -- a set of versatile black-box optimization heuristics inspired by evolutionary mechanisms. The project will evaluate the performance of EC-designed logic locking against various types of attacks, starting with the latest ML-based link prediction. Additionally, the project will provide guidelines and best practices for using EC-based logic locking in practical applications.

The rapid expansion of Internet of Things (IoT) devices in smart homes has significantly improved the quality of life, offering enhanced convenience, automation, and energy efficiency. However, this proliferation of connected devices raises critical concerns regarding security and privacy of the user data. In this paper, we propose a differential privacy-based system to ensure comprehensive security for data generated by smart homes. We employ the randomized response technique for the data and utilize Local Differential Privacy (LDP) to achieve data privacy. The data is then transmitted to an aggregator, where an obfuscation method is applied to ensure individual anonymity. Furthermore, we implement the Hidden Markov Model (HMM) technique at the aggregator level and apply differential privacy to the private data received from smart homes. Consequently, our approach achieves a dual layer of privacy protection, addressing the security concerns associated with IoT devices in smart cities.

Topologically interlocked materials and structures, which are assemblies of unbonded interlocking building blocks, are promising concepts for versatile structural applications. They have been shown to exhibit exceptional mechanical properties, including outstanding combinations of stiffness, strength, and toughness, beyond those achievable with common engineering materials. Recent work has established a theoretical upper limit for the strength and toughness of beam-like topologically interlocked structures. However, this theoretical limit is only achievable for structures with unrealistically high friction coefficients; therefore, it remains unknown whether it is achievable in actual structures. Here, we demonstrate that a hierarchical approach for topological interlocking, inspired by biological systems, overcomes these limitations and provides a path toward optimized mechanical performance. We consider beam-like topologically interlocked structures that present a sinusoidal surface morphology with controllable amplitude and wavelength and examine the properties of the structures using numerical simulations. The results show that the presence of surface morphologies increases the effective frictional strength of the interfaces and, if well-designed, enables us to reach the theoretical limit of the structural carrying capacity with realistic friction coefficients. Furthermore, we observe that the contribution of the surface morphology to the effective friction coefficient of the interface is well described by a criterion combining the surface curvature and surface gradient. Our study demonstrates the ability to architecture the surface morphology in beam-like topological interlocked structures to significantly enhance its structural performance.

Strong secrecy communication over a discrete memoryless state-dependent multiple access channel (SD-MAC) with an external eavesdropper is investigated. The channel is governed by discrete memoryless and i.i.d. channel states and the channel state information (CSI) is revealed to the encoders in a causal manner. An inner bound of the capacity is provided. To establish the inner bound, we investigate coding schemes incorporating wiretap coding and secret key agreement between the sender and the legitimate receiver. Two kinds of block Markov coding schemes are studied. The first one uses backward decoding and Wyner-Ziv coding and the secret key is constructed from a lossy reproduction of the CSI. The other one is an extended version of the existing coding scheme for point-to-point wiretap channels with causal CSI. We further investigate some capacity-achieving cases for state-dependent multiple access wiretap channels (SD-MAWCs) with degraded message sets. It turns out that the two coding schemes are both optimal in these cases.

User interaction data is an important source of supervision in counterfactual learning to rank (CLTR). Such data suffers from presentation bias. Much work in unbiased learning to rank (ULTR) focuses on position bias, i.e., items at higher ranks are more likely to be examined and clicked. Inter-item dependencies also influence examination probabilities, with outlier items in a ranking as an important example. Outliers are defined as items that observably deviate from the rest and therefore stand out in the ranking. In this paper, we identify and introduce the bias brought about by outlier items: users tend to click more on outlier items and their close neighbors. To this end, we first conduct a controlled experiment to study the effect of outliers on user clicks. Next, to examine whether the findings from our controlled experiment generalize to naturalistic situations, we explore real-world click logs from an e-commerce platform. We show that, in both scenarios, users tend to click significantly more on outlier items than on non-outlier items in the same rankings. We show that this tendency holds for all positions, i.e., for any specific position, an item receives more interactions when presented as an outlier as opposed to a non-outlier item. We conclude from our analysis that the effect of outliers on clicks is a type of bias that should be addressed in ULTR. We therefore propose an outlier-aware click model that accounts for both outlier and position bias, called outlier-aware position-based model ( OPBM). We estimate click propensities based on OPBM ; through extensive experiments performed on both real-world e-commerce data and semi-synthetic data, we verify the effectiveness of our outlier-aware click model. Our results show the superiority of OPBM against baselines in terms of ranking performance and true relevance estimation.

Webpages change over time, and web archives hold copies of historical versions of webpages. Users of web archives, such as journalists, want to find and view changes on webpages over time. However, the current search interfaces for web archives do not support this task. For the web archives that include a full-text search feature, multiple versions of the same webpage that match the search query are shown individually without enumerating changes, or are grouped together in a way that hides changes. We present a change text search engine that allows users to find changes in webpages. We describe the implementation of the search engine backend and frontend, including a tool that allows users to view the changes between two webpage versions in context as an animation. We evaluate the search engine with U.S. federal environmental webpages that changed between 2016 and 2020. The change text search results page can clearly show when terms and phrases were added or removed from webpages. The inverted index can also be queried to identify salient and frequently deleted terms in a corpus.

The Internet of Things (IoT) is integrating the Internet and smart devices in almost every domain such as home automation, e-healthcare systems, vehicular networks, industrial control and military applications. In these sectors, sensory data, which is collected from multiple sources and managed through intermediate processing by multiple nodes, is used for decision-making processes. Ensuring data integrity and keeping track of data provenance is a core requirement in such a highly dynamic context, since data provenance is an important tool for the assurance of data trustworthiness. Dealing with such requirements is challenging due to the limited computational and energy resources in IoT networks. This requires addressing several challenges such as processing overhead, secure provenance, bandwidth consumption and storage efficiency. In this paper, we propose ZIRCON, a novel zero-watermarking approach to establish end-to-end data trustworthiness in an IoT network. In ZIRCON, provenance information is stored in a tamper-proof centralized network database through watermarks, generated at source node before transmission. We provide an extensive security analysis showing the resilience of our scheme against passive and active attacks. We also compare our scheme with existing works based on performance metrics such as computational time, energy utilization and cost analysis. The results show that ZIRCON is robust against several attacks, lightweight, storage efficient, and better in energy utilization and bandwidth consumption, compared to prior art.

Integer linear programming models a wide range of practical combinatorial optimization problems and has significant impacts in industry and management sectors. This work develops the first standalone local search solver for general integer linear programming validated on a large heterogeneous problem dataset. We propose a local search framework that switches in three modes, namely Search, Improve, and Restore modes, and design tailored operators adapted to different modes, thus improve the quality of the current solution according to different situations. For the Search and Restore modes, we propose an operator named tight move, which adaptively modifies variables' values trying to make some constraint tight. For the Improve mode, an efficient operator lift move is proposed to improve the quality of the objective function while maintaining feasibility. Putting these together, we develop a local search solver for integer linear programming called Local-ILP. Experiments conducted on the MIPLIB dataset show the effectiveness of our solver in solving large-scale hard integer linear programming problems within a reasonably short time. Local-ILP is competitive and complementary to the state-of-the-art commercial solver Gurobi and significantly outperforms the state-of-the-art non-commercial solver SCIP. Moreover, our solver establishes new records for 6 MIPLIB open instances.

北京阿比特科技有限公司