Commit Message Generation (CMG) approaches aim to automatically generate commit messages based on given code diffs, which facilitate collaboration among developers and play a critical role in Open-Source Software (OSS). Very recently, Large Language Models (LLMs) have demonstrated extensive applicability in diverse code-related task. But few studies systematically explored their effectiveness using LLMs. This paper conducts the first comprehensive experiment to investigate how far we have been in applying LLM to generate high-quality commit messages. Motivated by a pilot analysis, we first clean the most widely-used CMG dataset following practitioners' criteria. Afterward, we re-evaluate diverse state-of-the-art CMG approaches and make comparisons with LLMs, demonstrating the superior performance of LLMs against state-of-the-art CMG approaches. Then, we further propose four manual metrics following the practice of OSS, including Accuracy, Integrity, Applicability, and Readability, and assess various LLMs accordingly. Results reveal that GPT-3.5 performs best overall, but different LLMs carry different advantages. To further boost LLMs' performance in the CMG task, we propose an Efficient Retrieval-based In-Context Learning (ICL) framework, namely ERICommiter, which leverages a two-step filtering to accelerate the retrieval efficiency and introduces semantic/lexical-based retrieval algorithm to construct the ICL examples. Extensive experiments demonstrate the substantial performance improvement of ERICommiter on various LLMs for code diffs of different programming languages. Meanwhile, ERICommiter also significantly reduces the retrieval time while keeping almost the same performance. Our research contributes to the understanding of LLMs' capabilities in the CMG field and provides valuable insights for practitioners seeking to leverage these tools in their workflows.
RowHammer is a DRAM vulnerability that can cause bit errors in a victim DRAM row solely by accessing its neighboring DRAM rows at a high-enough rate. Recent studies demonstrate that new DRAM devices are becoming increasingly vulnerable to RowHammer, and many works demonstrate system-level attacks for privilege escalation or information leakage. In this work, we perform the first rigorous fine-grained characterization and analysis of the correlation between RowHammer and temperature. We show that RowHammer is very sensitive to temperature variations, even if the variations are very small (e.g., $\pm 1$ {\deg}C). We leverage two key observations from our analysis to spy on DRAM temperature: 1) RowHammer-induced bit error rate consistently increases (or decreases) as the temperature increases, and 2) some DRAM cells that are vulnerable to RowHammer exhibit bit errors only at a particular temperature. Based on these observations, we propose a new RowHammer attack, called SpyHammer, that spies on the temperature of DRAM on critical systems such as industrial production lines, vehicles, and medical systems. SpyHammer is the first practical attack that can spy on DRAM temperature. Our evaluation in a controlled environment shows that SpyHammer can infer the temperature of the victim DRAM modules with an error of less than $\pm 2.5$ {\deg}C at the 90th percentile of all tested temperatures, for 12 real DRAM modules (120 DRAM chips) from four main manufacturers.
In recent years, Cross-Domain Recommendation (CDR) has drawn significant attention, which utilizes user data from multiple domains to enhance the recommendation performance. However, current CDR methods require sharing user data across domains, thereby violating the General Data Protection Regulation (GDPR). Consequently, numerous approaches have been proposed for Federated Cross-Domain Recommendation (FedCDR). Nevertheless, the data heterogeneity across different domains inevitably influences the overall performance of federated learning. In this study, we propose FedHCDR, a novel Federated Cross-Domain Recommendation framework with Hypergraph signal decoupling. Specifically, to address the data heterogeneity across domains, we introduce an approach called hypergraph signal decoupling (HSD) to decouple the user features into domain-exclusive and domain-shared features. The approach employs high-pass and low-pass hypergraph filters to decouple domain-exclusive and domain-shared user representations, which are trained by the local-global bi-directional transfer algorithm. In addition, a hypergraph contrastive learning (HCL) module is devised to enhance the learning of domain-shared user relationship information by perturbing the user hypergraph. Extensive experiments conducted on three real-world scenarios demonstrate that FedHCDR outperforms existing baselines significantly.
Video portrait segmentation (VPS), aiming at segmenting prominent foreground portraits from video frames, has received much attention in recent years. However, simplicity of existing VPS datasets leads to a limitation on extensive research of the task. In this work, we propose a new intricate large-scale Multi-scene Video Portrait Segmentation dataset MVPS consisting of 101 video clips in 7 scenario categories, in which 10,843 sampled frames are finely annotated at pixel level. The dataset has diverse scenes and complicated background environments, which is the most complex dataset in VPS to our best knowledge. Through the observation of a large number of videos with portraits during dataset construction, we find that due to the joint structure of human body, motion of portraits is part-associated, which leads that different parts are relatively independent in motion. That is, motion of different parts of the portraits is imbalanced. Towards this imbalance, an intuitive and reasonable idea is that different motion states in portraits can be better exploited by decoupling the portraits into parts. To achieve this, we propose a Part-Decoupling Network (PDNet) for video portrait segmentation. Specifically, an Inter-frame Part-Discriminated Attention (IPDA) module is proposed which unsupervisedly segments portrait into parts and utilizes different attentiveness on discriminative features specified to each different part. In this way, appropriate attention can be imposed to portrait parts with imbalanced motion to extract part-discriminated correlations, so that the portraits can be segmented more accurately. Experimental results demonstrate that our method achieves leading performance with the comparison to state-of-the-art methods.
Human Mesh Recovery (HMR) from a single RGB image is a highly ambiguous problem, as similar 2D projections can correspond to multiple 3D interpretations. Nevertheless, most HMR methods overlook this ambiguity and make a single prediction without accounting for the associated uncertainty. A few approaches generate a distribution of human meshes, enabling the sampling of multiple predictions; however, none of them is competitive with the latest single-output model when making a single prediction. This work proposes a new approach based on masked generative modeling. By tokenizing the human pose and shape, we formulate the HMR task as generating a sequence of discrete tokens conditioned on an input image. We introduce MEGA, a MaskEd Generative Autoencoder trained to recover human meshes from images and partial human mesh token sequences. Given an image, our flexible generation scheme allows us to predict a single human mesh in deterministic mode or to generate multiple human meshes in stochastic mode. MEGA enables us to propose multiple outputs and to evaluate the uncertainty of the predictions. Experiments on in-the-wild benchmarks show that MEGA achieves state-of-the-art performance in deterministic and stochastic modes, outperforming single-output and multi-output approaches.
POKT Network's decentralized Remote Procedure Call (RPC) infrastructure, surpassing 740 billion requests since launching on MainNet in 2020, is well-positioned to extend into providing AI inference services with minimal design or implementation modifications. This litepaper illustrates how the network's open-source and permissionless design aligns incentives among model researchers, hardware operators, API providers and users whom we term model Sources, Suppliers, Gateways and Applications respectively. Through its Relay Mining algorithm, POKT creates a transparent marketplace where costs and earnings directly reflect cryptographically verified usage. This decentralized framework offers large model AI researchers a new avenue to disseminate their work and generate revenue without the complexities of maintaining infrastructure or building end-user products. Supply scales naturally with demand, as evidenced in recent years and the protocol's free market dynamics. POKT Gateways facilitate network growth, evolution, adoption, and quality by acting as application-facing load balancers, providing value-added features without managing LLM nodes directly. This vertically decoupled network, battle tested over several years, is set up to accelerate the adoption, operation, innovation and financialization of open-source models. It is the first mature permissionless network whose quality of service competes with centralized entities set up to provide application grade inference.
Expressive speech-to-speech translation (S2ST) is a key research topic in seamless communication, which focuses on the preservation of semantics and speaker vocal style in translated speech. Early works synthesized speaker style aligned speech in order to directly learn the mapping from speech to target speech spectrogram. Without reliance on style aligned data, recent studies leverage the advances of language modeling (LM) and build cascaded LMs on semantic and acoustic tokens. This work proposes SeamlessExpressiveLM, a single speech language model for expressive S2ST. We decompose the complex source-to-target speech mapping into intermediate generation steps with chain-of-thought prompting. The model is first guided to translate target semantic content and then transfer the speaker style to multi-stream acoustic units. Evaluated on Spanish-to-English and Hungarian-to-English translations, SeamlessExpressiveLM outperforms cascaded LMs in both semantic quality and style transfer, meanwhile achieving better parameter efficiency.
The advent of Vision Language Models (VLMs) transformed image understanding from closed-set classifications to dynamic image-language interactions, enabling open-vocabulary segmentation. Despite this flexibility, VLMs often fall behind closed-set classifiers in accuracy due to their reliance on ambiguous image captions and lack of domain-specific knowledge. We, therefore, introduce a new task domain adaptation for open-vocabulary segmentation, enhancing VLMs with domain-specific priors while preserving their open-vocabulary nature. Existing adaptation methods, when applied to segmentation tasks, improve performance on training queries but can reduce VLM performance on zero-shot text inputs. To address this shortcoming, we propose an approach that combines parameter-efficient prompt tuning with a triplet-loss-based training strategy. This strategy is designed to enhance open-vocabulary generalization while adapting to the visual domain. Our results outperform other parameter-efficient adaptation strategies in open-vocabulary segment classification tasks across indoor and outdoor datasets. Notably, our approach is the only one that consistently surpasses the original VLM on zero-shot queries. Our adapted VLMs can be plug-and-play integrated into existing open-vocabulary segmentation pipelines, improving OV-Seg by +6.0% mIoU on ADE20K, and OpenMask3D by +4.1% AP on ScanNet++ Offices without any changes to the methods.
AI legal assistants based on Large Language Models (LLMs) can provide accessible legal consulting services, but the hallucination problem poses potential legal risks. This paper presents Chatlaw, an innovative legal assistant utilizing a Mixture-of-Experts (MoE) model and a multi-agent system to enhance the reliability and accuracy of AI-driven legal services. By integrating knowledge graphs with artificial screening, we construct a high-quality legal dataset to train the MoE model. This model utilizes different experts to address various legal issues, optimizing the accuracy of legal responses. Additionally, Standardized Operating Procedures (SOP), modeled after real law firm workflows, significantly reduce errors and hallucinations in legal services. Our MoE model outperforms GPT-4 in the Lawbench and Unified Qualification Exam for Legal Professionals by 7.73% in accuracy and 11 points, respectively, and also surpasses other models in multiple dimensions during real-case consultations, demonstrating our robust capability for legal consultation.
As Large Language Models (LLMs) have made significant advancements across various tasks, such as question answering, translation, text summarization, and dialogue systems, the need for accuracy in information becomes crucial, especially for serious financial products serving billions of users like Alipay. However, for a real-world product serving millions of users, the inference speed of LLMs becomes a critical factor compared to a mere experimental model. Hence, this paper presents a generic framework for accelerating the inference process, resulting in a substantial increase in speed and cost reduction for our LLM-based scenarios, with lossless generation accuracy. In the traditional inference process, each token is generated sequentially by the LLM, leading to a time consumption proportional to the number of generated tokens. To enhance this process, our framework, named \textit{lookahead}, introduces a \textit{multi-branch} strategy. Instead of generating a single token at a time, we propose a Trie-based retrieval and verification mechanism to be able to accept several tokens at a forward step. Our strategy offers two distinct advantages: (1) it guarantees absolute correctness of the output, avoiding any approximation algorithms, and (2) the worst-case performance of our approach is equivalent to the conventional process. We conduct extensive experiments to demonstrate the significant improvements achieved by applying our inference acceleration framework. Our framework is widely deployed in Alipay since April 2023, and obtain remarkable 2.66x to 6.26x speedup. Our code is available at //github.com/alipay/PainlessInferenceAcceleration.
Federated Semi-Supervised Learning (FSSL) leverages both labeled and unlabeled data on clients to collaboratively train a model.In FSSL, the heterogeneous data can introduce prediction bias into the model, causing the model's prediction to skew towards some certain classes. Existing FSSL methods primarily tackle this issue by enhancing consistency in model parameters or outputs. However, as the models themselves are biased, merely constraining their consistency is not sufficient to alleviate prediction bias. In this paper, we explore this bias from a Bayesian perspective and demonstrate that it principally originates from label prior bias within the training data. Building upon this insight, we propose a debiasing method for FSSL named FedDB. FedDB utilizes the Average Prediction Probability of Unlabeled Data (APP-U) to approximate the biased prior.During local training, FedDB employs APP-U to refine pseudo-labeling through Bayes' theorem, thereby significantly reducing the label prior bias. Concurrently, during the model aggregation, FedDB uses APP-U from participating clients to formulate unbiased aggregate weights, thereby effectively diminishing bias in the global model. Experimental results show that FedDB can surpass existing FSSL methods. The code is available at //github.com/GuogangZhu/FedDB.