亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In-context learning is a new learning paradigm where a language model conditions on a few input-output pairs (demonstrations) and a test input, and directly outputs the prediction. It has been shown highly dependent on the provided demonstrations and thus promotes the research of demonstration retrieval: given a test input, relevant examples are retrieved from the training set to serve as informative demonstrations for in-context learning. While previous works focus on training task-specific retrievers for several tasks separately, these methods are often hard to transfer and scale on various tasks, and separately trained retrievers incur a lot of parameter storage and deployment cost. In this paper, we propose Unified Demonstration Retriever (\textbf{UDR}), a single model to retrieve demonstrations for a wide range of tasks. To train UDR, we cast various tasks' training signals into a unified list-wise ranking formulation by language model's feedback. Then we propose a multi-task list-wise ranking training framework, with an iterative mining strategy to find high-quality candidates, which can help UDR fully incorporate various tasks' signals. Experiments on 30+ tasks across 13 task families and multiple data domains show that UDR significantly outperforms baselines. Further analyses show the effectiveness of each proposed component and UDR's strong ability in various scenarios including different LMs (1.3B - 175B), unseen datasets, varying demonstration quantities, etc.

相關內容

Code-Switching (CS) is referred to the phenomenon of alternately using words and phrases from different languages. While today's neural end-to-end (E2E) models deliver state-of-the-art performances on the task of automatic speech recognition (ASR) it is commonly known that these systems are very data-intensive. However, there is only a few transcribed and aligned CS speech available. To overcome this problem and train multilingual systems which can transcribe CS speech, we propose a simple yet effective data augmentation in which audio and corresponding labels of different source languages are concatenated. By using this training data, our E2E model improves on transcribing CS speech. It also surpasses monolingual models on monolingual tests. The results show that this augmentation technique can even improve the model's performance on inter-sentential language switches not seen during training by 5,03% WER.

In recent years, by leveraging more data, computation, and diverse tasks, learned optimizers have achieved remarkable success in supervised learning, outperforming classical hand-designed optimizers. Reinforcement learning (RL) is essentially different from supervised learning and in practice these learned optimizers do not work well even in simple RL tasks. We investigate this phenomenon and identity three issues. First, the gradients of an RL agent vary across a wide range in logarithms while their absolute values are in a small range, making neural networks hard to obtain accurate parameter updates. Second, the agent-gradient distribution is non-independent and identically distributed, leading to inefficient meta-training. Finally, due to highly stochastic agent-environment interactions, the agent-gradients have high bias and variance, which increase the difficulty of learning an optimizer for RL. We propose gradient processing, pipeline training, and a novel optimizer structure with good inductive bias to address these issues. By applying these techniques, for the first time, we show that learning an optimizer for RL from scratch is possible. Although only trained in toy tasks, our learned optimizer can generalize to unseen complex tasks in Brax.

Learning from demonstrations (LfD) enables humans to easily teach collaborative robots (cobots) new motions that can be generalized to new task configurations without retraining. However, state-of-the-art LfD methods require manually tuning intrinsic parameters and have rarely been used in industrial contexts without experts. We propose a parameter-free LfD method based on probabilistic movement primitives, where parameters are determined using Jensen-Shannon divergence and Bayesian optimization, and users do not have to perform manual parameter tuning. The cobot's precision in reproducing learned motions, and its ease of teaching and use by non-expert users are evaluated in two field tests. In the first field test, the cobot works on elevator door maintenance. In the second test, three factory workers teach the cobot tasks useful for their daily workflow. Errors between the cobot and target joint angles are insignificant -- at worst $0.28$ deg -- and the motion is accurately reproduced -- GMCC score of 1. Questionnaires completed by the workers highlighted the method's ease of use and the accuracy of the reproduced motion. Our code and recorded trajectories are made available online.

We address the computational efficiency in solving the A-optimal Bayesian design of experiments problems for which the observational model is based on partial differential equations and, consequently, is computationally expensive to evaluate. A-optimality is a widely used and easy-to-interpret criterion for the Bayesian design of experiments. The criterion seeks the optimal experiment design by minimizing the expected conditional variance, also known as the expected posterior variance. This work presents a novel likelihood-free method for seeking the A-optimal design of experiments without sampling or integrating the Bayesian posterior distribution. In our approach, the expected conditional variance is obtained via the variance of the conditional expectation using the law of total variance, while we take advantage of the orthogonal projection property to approximate the conditional expectation. Through an asymptotic error estimation, we show that the intractability of the posterior does not affect the performance of our approach. We use an artificial neural network (ANN) to approximate the nonlinear conditional expectation to implement our method. For dealing with continuous experimental design parameters, we integrate the training process of the ANN into minimizing the expected conditional variance. Specifically, we propose a non-local approximation of the conditional expectation and apply transfer learning to reduce the number of evaluations of the observation model. Through numerical experiments, we demonstrate that our method significantly reduces the number of observational model evaluations compared with common importance sampling-based approaches. This reduction is crucial, considering the computationally expensive nature of these models.

Relation extraction (RE) is a crucial task in natural language processing (NLP) that aims to identify and classify relationships between entities mentioned in text. In the financial domain, relation extraction plays a vital role in extracting valuable information from financial documents, such as news articles, earnings reports, and company filings. This paper describes our solution to relation extraction on one such dataset REFinD. The dataset was released along with shared task as a part of the Fourth Workshop on Knowledge Discovery from Unstructured Data in Financial Services, co-located with SIGIR 2023. In this paper, we employed OpenAI models under the framework of in-context learning (ICL). We utilized two retrieval strategies to find top K relevant in-context learning demonstrations / examples from training data for a given test example. The first retrieval mechanism, we employed, is a learning-free dense retriever and the other system is a learning-based retriever. We were able to achieve 4th rank on the leaderboard. Our best F1-score is 0.718.

When trying to answer complex questions, people often rely on multiple sources of information, such as visual, textual, and tabular data. Previous approaches to this problem have focused on designing input features or model structure in the multi-modal space, which is inflexible for cross-modal reasoning or data-efficient training. In this paper, we call for an alternative paradigm, which transforms the images and tables into unified language representations, so that we can simplify the task into a simpler textual QA problem that can be solved using three steps: retrieval, ranking, and generation, all within a language space. This idea takes advantage of the power of pre-trained language models and is implemented in a framework called Solar. Our experimental results show that Solar outperforms all existing methods by 10.6-32.3 pts on two datasets, MultimodalQA and MMCoQA, across ten different metrics. Additionally, Solar achieves the best performance on the WebQA leaderboard

Recent work has demonstrated that using parameter efficient tuning techniques such as prefix tuning (or P-tuning) on pretrained language models can yield performance that is comparable or superior to fine-tuning while dramatically reducing trainable parameters. Nevertheless, the effectiveness of such methods under the context of data augmentation, a common strategy to improve learning under low data regimes, has not been fully explored. In this paper, we examine the effectiveness of several popular task-agnostic data augmentation techniques, i.e., EDA, Back Translation, and Mixup, when using two general parameter efficient tuning methods, P-tuning v2 and LoRA, under data scarcity. We show that data augmentation can be used to boost the performance of P-tuning and LoRA models, but the effectiveness of each technique varies and certain methods can lead to a notable degradation in performance, particularly when using larger models and on harder tasks. We further analyze the sentence representations of P-tuning compared to fine-tuning to help understand the above behaviour, and reveal how P-tuning generally presents a more limited ability to separate the sentence embeddings from different classes of augmented data. In addition, it displays poorer performance on heavily altered data. However, we demonstrate that by adding a simple contrastive loss function it can help mitigate such issues for prefix tuning, resulting in sizable improvements to augmented data performance.

We present prompt distribution learning for effectively adapting a pre-trained vision-language model to address downstream recognition tasks. Our method not only learns low-bias prompts from a few samples but also captures the distribution of diverse prompts to handle the varying visual representations. In this way, we provide high-quality task-related content for facilitating recognition. This prompt distribution learning is realized by an efficient approach that learns the output embeddings of prompts instead of the input embeddings. Thus, we can employ a Gaussian distribution to model them effectively and derive a surrogate loss for efficient training. Extensive experiments on 12 datasets demonstrate that our method consistently and significantly outperforms existing methods. For example, with 1 sample per category, it relatively improves the average result by 9.1% compared to human-crafted prompts.

In multi-turn dialog, utterances do not always take the full form of sentences \cite{Carbonell1983DiscoursePA}, which naturally makes understanding the dialog context more difficult. However, it is essential to fully grasp the dialog context to generate a reasonable response. Hence, in this paper, we propose to improve the response generation performance by examining the model's ability to answer a reading comprehension question, where the question is focused on the omitted information in the dialog. Enlightened by the multi-task learning scheme, we propose a joint framework that unifies these two tasks, sharing the same encoder to extract the common and task-invariant features with different decoders to learn task-specific features. To better fusing information from the question and the dialog history in the encoding part, we propose to augment the Transformer architecture with a memory updater, which is designed to selectively store and update the history dialog information so as to support downstream tasks. For the experiment, we employ human annotators to write and examine a large-scale dialog reading comprehension dataset. Extensive experiments are conducted on this dataset, and the results show that the proposed model brings substantial improvements over several strong baselines on both tasks. In this way, we demonstrate that reasoning can indeed help better response generation and vice versa. We release our large-scale dataset for further research.

The content based image retrieval aims to find the similar images from a large scale dataset against a query image. Generally, the similarity between the representative features of the query image and dataset images is used to rank the images for retrieval. In early days, various hand designed feature descriptors have been investigated based on the visual cues such as color, texture, shape, etc. that represent the images. However, the deep learning has emerged as a dominating alternative of hand-designed feature engineering from a decade. It learns the features automatically from the data. This paper presents a comprehensive survey of deep learning based developments in the past decade for content based image retrieval. The categorization of existing state-of-the-art methods from different perspectives is also performed for greater understanding of the progress. The taxonomy used in this survey covers different supervision, different networks, different descriptor type and different retrieval type. A performance analysis is also performed using the state-of-the-art methods. The insights are also presented for the benefit of the researchers to observe the progress and to make the best choices. The survey presented in this paper will help in further research progress in image retrieval using deep learning.

北京阿比特科技有限公司