The stable roommates problem can admit multiple different stable matchings. We have different criteria for deciding which one is optimal, but computing those is often NP-hard. We show that the problem of finding generous or rank-maximal stable matchings in an instance of the roommates problem with incomplete lists is NP-hard even when the preference lists are at most length 3. We show that just maximising the number of first choices or minimising the number of last choices is NP-hard with the short preference lists. We show that the number of $R^{th}$ choices, where $R$ is the minimum-regret of a given instance of SRI, is 2-approximable among all the stable matchings. Additionally, we show that the problem of finding a stable matching that maximises the number of first choices does not admit a constant time approximation algorithm and is W[1]-hard with respect to the number of first choices. We implement integer programming and constraint programming formulations for the optimality criteria of SRI. We find that constraint programming outperforms integer programming and an earlier answer set programming approach by Erdam et. al. (2020) for most optimality criteria. Integer programming outperforms constraint programming and answer set programming on the almost stable roommates problem.
We study the problem of bounding path-dependent expectations (within any finite time horizon $d$) over the class of discrete-time martingales whose marginal distributions lie within a prescribed tolerance of a given collection of benchmark marginal distributions. This problem is a relaxation of the martingale optimal transport (MOT) problem and is motivated by applications to super-hedging in financial markets. We show that the empirical version of our relaxed MOT problem can be approximated within $O\left( n^{-1/2}\right)$ error where $n$ is the number of samples of each of the individual marginal distributions (generated independently) and using a suitably constructed finite-dimensional linear programming problem.
We study the Hamilton cycle problem with input a random graph G=G(n,p) in two settings. In the first one, G is given to us in the form of randomly ordered adjacency lists while in the second one we are given the adjacency matrix of G. In each of the settings we give a deterministic algorithm that w.h.p. either it finds a Hamilton cycle or it returns a certificate that such a cycle does not exists, for p > 0. The running times of our algorithms are w.h.p. O(n) and O(n/p) respectively each being best possible in its own setting.
We study the Maximum Independent Set (MIS) problem under the notion of stability introduced by Bilu and Linial (2010): a weighted instance of MIS is $\gamma$-stable if it has a unique optimal solution that remains the unique optimum under multiplicative perturbations of the weights by a factor of at most $\gamma\geq 1$. The goal then is to efficiently recover the unique optimal solution. In this work, we solve stable instances of MIS on several graphs classes: we solve $\widetilde{O}(\Delta/\sqrt{\log \Delta})$-stable instances on graphs of maximum degree $\Delta$, $(k - 1)$-stable instances on $k$-colorable graphs and $(1 + \varepsilon)$-stable instances on planar graphs. For general graphs, we present a strong lower bound showing that there are no efficient algorithms for $O(n^{\frac{1}{2} - \varepsilon})$-stable instances of MIS, assuming the planted clique conjecture. We also give an algorithm for $(\varepsilon n)$-stable instances. As a by-product of our techniques, we give algorithms and lower bounds for stable instances of Node Multiway Cut. Furthermore, we prove a general result showing that the integrality gap of convex relaxations of several maximization problems reduces dramatically on stable instances. Moreover, we initiate the study of certified algorithms, a notion recently introduced by Makarychev and Makarychev (2018), which is a class of $\gamma$-approximation algorithms that satisfy one crucial property: the solution returned is optimal for a perturbation of the original instance. We obtain $\Delta$-certified algorithms for MIS on graphs of maximum degree $\Delta$, and $(1+\varepsilon)$-certified algorithms on planar graphs. Finally, we analyze the algorithm of Berman and Furer (1994) and prove that it is a $\left(\frac{\Delta + 1}{3} + \varepsilon\right)$-certified algorithm for MIS on graphs of maximum degree $\Delta$ where all weights are equal to 1.
The maximum matching problem in dynamic graphs subject to edge updates (insertions and deletions) has received much attention over the last few years; a multitude of approximation/time tradeoffs were obtained, improving upon the folklore algorithm, which maintains a maximal (and hence $2$-approximate) matching in $O(n)$ worst-case update time in $n$-node graphs. We present the first deterministic algorithm which outperforms the folklore algorithm in terms of {\em both} approximation ratio and worst-case update time. Specifically, we give a $(2-\Omega(1))$-approximate algorithm with $O(m^{3/8})=O(n^{3/4})$ worst-case update time in $n$-node, $m$-edge graphs. For sufficiently small constant $\epsilon>0$, no deterministic $(2+\epsilon)$-approximate algorithm with worst-case update time $O(n^{0.99})$ was known. Our second result is the first deterministic $(2+\epsilon)$-approximate weighted matching algorithm with $O_\epsilon(1)\cdot O(\sqrt[4]{m}) = O_\epsilon(1)\cdot O(\sqrt{n})$ worst-case update time. Our main technical contributions are threefold: first, we characterize the tight cases for \emph{kernels}, which are the well-studied matching sparsifiers underlying much of the $(2+\epsilon)$-approximate dynamic matching literature. This characterization, together with multiple ideas -- old and new -- underlies our result for breaking the approximation barrier of $2$. Our second technical contribution is the first example of a dynamic matching algorithm whose running time is improved due to improving the \emph{recourse} of other dynamic matching algorithms. Finally, we show how to use dynamic bipartite matching algorithms as black-box subroutines for dynamic matching in general graphs without incurring the natural $\frac{3}{2}$ factor in the approximation ratio which such approaches naturally incur.
It is well-known that an algorithm exists which approximates the NP-complete problem of Set Cover within a factor of ln(n), and it was recently proven that this approximation ratio is optimal unless P = NP. This optimality result is the product of many advances in characterizations of NP, in terms of interactive proof systems and probabilistically checkable proofs (PCP), and improvements to the analyses thereof. However, as a result, it is difficult to extract the development of Set Cover approximation bounds from the greater scope of proof system analysis. This paper attempts to present a chronological progression of results on lower-bounding the approximation ratio of Set Cover. We analyze a series of proofs of progressively better bounds and unify the results under similar terminologies and frameworks to provide an accurate comparison of proof techniques and their results. We also treat many preliminary results as black-boxes to better focus our analysis on the core reductions to Set Cover instances. The result is alternative versions of several hardness proofs, beginning with initial inapproximability results and culminating in a version of the proof that ln(n) is a tight lower bound.
Given a simple graph $G$ and an integer $k$, the goal of $k$-Clique problem is to decide if $G$ contains a complete subgraph of size $k$. We say an algorithm approximates $k$-Clique within a factor $g(k)$ if it can find a clique of size at least $k / g(k)$ when $G$ is guaranteed to have a $k$-clique. Recently, it was shown that approximating $k$-Clique within a constant factor is W[1]-hard [Lin21]. We study the approximation of $k$-Clique under the Exponential Time Hypothesis (ETH). The reduction of [Lin21] already implies an $n^{\Omega(\sqrt[6]{\log k})}$-time lower bound under ETH. We improve this lower bound to $n^{\Omega(\log k)}$. Using the gap-amplification technique by expander graphs, we also prove that there is no $k^{o(1)}$ factor FPT-approximation algorithm for $k$-Clique under ETH. We also suggest a new way to prove the Parameterized Inapproximability Hypothesis (PIH) under ETH. We show that if there is no $n^{O(\frac{k}{\log k})}$ algorithm to approximate $k$-Clique within a constant factor, then PIH is true.
We study a new class of NP search problems, those which can be proved total using standard combinatorial reasoning based on approximate counting. Our model for this kind of reasoning is the bounded arithmetic theory $\mathrm{APC}_2$ of [Je\v{r}\'abek 2009]. In particular, the Ramsey and weak pigeonhole search problems lie in the new class. We give a purely computational characterization of this class and show that, relative to an oracle, it does not contain the problem CPLS, a strengthening of PLS. As CPLS is provably total in the theory $T^2_2$, this shows that $\mathrm{APC}_2$ does not prove every $\forall \Sigma^b_1$ sentence which is provable in bounded arithmetic. This answers the question posed in [Buss, Ko{\l}odziejczyk, Thapen 2014] and represents some progress in the programme of separating the levels of the bounded arithmetic hierarchy by low-complexity sentences. Our main technical tool is an extension of the "fixing lemma" from [Pudl\'ak, Thapen 2017], a form of switching lemma, which we use to show that a random partial oracle from a certain distribution will, with high probability, determine an entire computation of a $\textrm{P}^{\textrm{NP}}$ oracle machine. The introduction to the paper is intended to make the statements and context of the results accessible to someone unfamiliar with NP search problems or with bounded arithmetic.
A common approach to tackle a combinatorial optimization problem is to first solve a continuous relaxation and then round the obtained fractional solution. For the latter, the framework of contention resolution schemes (or CR schemes), introduced by Chekuri, Vondrak, and Zenklusen, is a general and successful tool. A CR scheme takes a fractional point $x$ in a relaxation polytope, rounds each coordinate $x_i$ independently to get a possibly non-feasible set, and then drops some elements in order to satisfy the independence constraints. Intuitively, a CR scheme is $c$-balanced if every element $i$ is selected with probability at least $c \cdot x_i$. It is known that general matroids admit a $(1-1/e)$-balanced CR scheme, and that this is (asymptotically) optimal. This is in particular true for the special case of uniform matroids of rank one. In this work, we provide a simple and explicit monotone CR scheme with a balancedness of $1 - \binom{n}{k}\:\left(1-\frac{k}{n}\right)^{n+1-k}\:\left(\frac{k}{n}\right)^k$, and show that this is optimal. As $n$ grows, this expression converges from above to $1 - e^{-k}k^k/k!$. While this asymptotic bound can be obtained by combining previously known results, these require defining an exponential-sized linear program, as well as using random sampling and the ellipsoid algorithm. Our procedure, on the other hand, has the advantage of being simple and explicit. Moreover, this scheme generalizes into an optimal CR scheme for partition matroids.
Counterfactual explanations are usually generated through heuristics that are sensitive to the search's initial conditions. The absence of guarantees of performance and robustness hinders trustworthiness. In this paper, we take a disciplined approach towards counterfactual explanations for tree ensembles. We advocate for a model-based search aiming at "optimal" explanations and propose efficient mixed-integer programming approaches. We show that isolation forests can be modeled within our framework to focus the search on plausible explanations with a low outlier score. We provide comprehensive coverage of additional constraints that model important objectives, heterogeneous data types, structural constraints on the feature space, along with resource and actionability restrictions. Our experimental analyses demonstrate that the proposed search approach requires a computational effort that is orders of magnitude smaller than previous mathematical programming algorithms. It scales up to large data sets and tree ensembles, where it provides, within seconds, systematic explanations grounded on well-defined models solved to optimality.
This paper describes a suite of algorithms for constructing low-rank approximations of an input matrix from a random linear image of the matrix, called a sketch. These methods can preserve structural properties of the input matrix, such as positive-semidefiniteness, and they can produce approximations with a user-specified rank. The algorithms are simple, accurate, numerically stable, and provably correct. Moreover, each method is accompanied by an informative error bound that allows users to select parameters a priori to achieve a given approximation quality. These claims are supported by numerical experiments with real and synthetic data.