Reconfigurable intelligent surfaces (RISs) have become a promising technology to meet the requirements of energy efficiency and scalability in future six-generation (6G) communications. However, a significant challenge in RISs-aided communications is the joint optimization of active and passive beamforming at base stations (BSs) and RISs respectively. Specifically, the main difficulty is attributed to the highly non-convex optimization space of beamforming matrices at both BSs and RISs, as well as the diversity and mobility of communication scenarios. To address this, we present a greenly gradient based meta learning beamforming (GMLB) approach. Unlike traditional deep learning based methods which take channel information directly as input, GMLB feeds the gradient of sum rate into neural networks. Coherently, we design a differential regulator to address the phase shift optimization of RISs. Moreover, we use the meta learning to iteratively optimize the beamforming matrices of BSs and RISs. These techniques make the proposed method to work well without requiring energy-consuming pre-training. Simulations show that GMLB could achieve higher sum rate than that of typical alternating optimization algorithms with the energy consumption by two orders of magnitude less.
Recently, intelligent reflecting surface (IRS)-aided millimeter-wave (mmWave) and terahertz (THz) communications are considered in the wireless community. This paper aims to design a beam-based multiple-access strategy for this new paradigm. Its key idea is to make use of multiple sub-arrays over a hybrid digital-analog array to form independent beams, each of which is steered towards the desired direction to mitigate inter-user interference and suppress unwanted signal reflection. The proposed scheme combines the advantages of both orthogonal multiple access (i.e., no inter-user interference) and non-orthogonal multiple access (i.e., full time-frequency resource use). Consequently, it can substantially boost the system capacity, as verified by Monte-Carlo simulations.
Age of Information (AoI) has been proposed to quantify the freshness of information for emerging real-time applications such as remote monitoring and control in wireless networked control systems (WNCSs). Minimization of the average AoI and its outage probability can ensure timely and stable transmission. Energy efficiency (EE) also plays an important role in WNCSs, as many devices are featured by low cost and limited battery. Multi-connectivity over multiple links enables a decrease in AoI, at the cost of energy. We tackle the unresolved problem of selecting the optimal number of connections that is both AoI-optimal and energy-efficient, while avoiding risky states. To address this issue, the average AoI and peak AoI (PAoI), as well as PAoI violation probability are formulated as functions of the number of connections. Then the EE-PAoI ratio is introduced to allow a tradeoff between AoI and energy, which is maximized by the proposed risk-aware, AoI-optimal and energy-efficient connectivity scheme. To obtain this, we analyze the property of the formulated EE-PAoI ratio and prove the monotonicity of PAoI violation probability. Interestingly, we reveal that the multi-connectivity scheme is not always preferable, and the signal-to-noise ratio (SNR) threshold that determines the selection of the multi-connectivity scheme is derived as a function of the coding rate. Also, the optimal number of connections is obtained and shown to be a decreasing function of the transmit power. Simulation results demonstrate that the proposed scheme enables more than 15 folds of EE-PAoI gain at the low SNR than the single-connectivity scheme.
The Internet of Things (IoT) technology uses small and cost-effective sensors for various applications, such as Industrial IoT. However, these sensor nodes are powered by fixed-size batteries, which creates a trade-off between network performance and long-term sustainability. Moreover, some applications require the network to provide a certain level of service, such as a lower delay for critical data, while ensuring the operational reliability of sensor nodes. To address this energy challenge, external energy harvesting sources, such as solar and wind, offer promising and eco-friendly solutions. However, the available energy from a single energy source is insufficient to meet these requirements. This drives the utilization of a hybrid energy harvesting approach, such as the integration of solar and wind energy harvesters, to increase the amount of harvested energy. Nevertheless, to fully utilize the available energy, which is dynamic in nature, the sensor node must adapt its operation to ensure sustainable operation and enhanced network performance. Therefore, this paper proposes a hybrid energy harvesting-based energy neutral operation (ENO) medium access control (MAC) protocol, called HENO-MAC, that allows the receiver node to harvest energy from the solar-wind harvesters and adapt its duty cycle accordingly. The performance of the proposed HENO-MAC was evaluated using the latest realistic solar and wind data for two consecutive days in GreenCastalia. The simulation results demonstrate that the duty cycle mechanism of HENO-MAC effectively utilizes the harvested energy to achieve ENO and uses the available energy resources efficiently to reduce the packet delay for all packets and the highest priority packet by up to 28.5% and 27.3%, respectively, when compared with other existing MAC protocols.
Diffusion Models (DMs) are state-of-the-art generative models that learn a reversible corruption process from iterative noise addition and denoising. They are the backbone of many generative AI applications, such as text-to-image conditional generation. However, recent studies have shown that basic unconditional DMs (e.g., DDPM and DDIM) are vulnerable to backdoor injection, a type of output manipulation attack triggered by a maliciously embedded pattern at model input. This paper presents a unified backdoor attack framework (VillanDiffusion) to expand the current scope of backdoor analysis for DMs. Our framework covers mainstream unconditional and conditional DMs (denoising-based and score-based) and various training-free samplers for holistic evaluations. Experiments show that our unified framework facilitates the backdoor analysis of different DM configurations and provides new insights into caption-based backdoor attacks on DMs. Our code is available on GitHub: \url{//github.com/IBM/villandiffusion}
Multi-modal 3D scene understanding has gained considerable attention due to its wide applications in many areas, such as autonomous driving and human-computer interaction. Compared to conventional single-modal 3D understanding, introducing an additional modality not only elevates the richness and precision of scene interpretation but also ensures a more robust and resilient understanding. This becomes especially crucial in varied and challenging environments where solely relying on 3D data might be inadequate. While there has been a surge in the development of multi-modal 3D methods over past three years, especially those integrating multi-camera images (3D+2D) and textual descriptions (3D+language), a comprehensive and in-depth review is notably absent. In this article, we present a systematic survey of recent progress to bridge this gap. We begin by briefly introducing a background that formally defines various 3D multi-modal tasks and summarizes their inherent challenges. After that, we present a novel taxonomy that delivers a thorough categorization of existing methods according to modalities and tasks, exploring their respective strengths and limitations. Furthermore, comparative results of recent approaches on several benchmark datasets, together with insightful analysis, are offered. Finally, we discuss the unresolved issues and provide several potential avenues for future research.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
The development of unmanned aerial vehicles (UAVs) has been gaining momentum in recent years owing to technological advances and a significant reduction in their cost. UAV technology can be used in a wide range of domains, including communication, agriculture, security, and transportation. It may be useful to group the UAVs into clusters/flocks in certain domains, and various challenges associated with UAV usage can be alleviated by clustering. Several computational challenges arise in UAV flock management, which can be solved by using machine learning (ML) methods. In this survey, we describe the basic terms relating to UAVS and modern ML methods, and we provide an overview of related tutorials and surveys. We subsequently consider the different challenges that appear in UAV flocks. For each issue, we survey several machine learning-based methods that have been suggested in the literature to handle the associated challenges. Thereafter, we describe various open issues in which ML can be applied to solve the different challenges of flocks, and we suggest means of using ML methods for this purpose. This comprehensive review may be useful for both researchers and developers in providing a wide view of various aspects of state-of-the-art ML technologies that are applicable to flock management.
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.