Many problems in robotics involve creating or breaking multiple contacts nearly simultaneously or in an indeterminate order. We present a novel general purpose numerical integrator based on the theory of Event Selected Systems (ESS). Many multicontact models are ESS, which has recently been shown to imply that despite a discontinuous vector field, the flow of these systems is continuous, piecewise smooth, and has a well defined orbital derivative for all trajectories, which can be rapidly computed. We provide an elementary proof that our integrator is first-order accurate and verify numerically that it is in fact second-order accurate as its construction anticipated. We also compare our integrator, implemented in NumPy, to a MuJoCo simulation on models with 2 to 100 contacts, and confirm that the increase in simulation time per contact is nearly identical. The results suggest that this novel integrator can be invaluable for modelling and control in many robotics applications.
Navigating robots safely and efficiently in crowded and complex environments remains a significant challenge. However, due to the dynamic and intricate nature of these settings, planning efficient and collision-free paths for robots to track is particularly difficult. In this paper, we uniquely bridge the robot's perception, decision-making and control processes by utilizing the convex obstacle-free region computed from 2D LiDAR data. The overall pipeline is threefold: (1) We proposes a robot navigation framework that utilizes deep reinforcement learning (DRL), conceptualizing the observation as the convex obstacle-free region, a departure from general reliance on raw sensor inputs. (2) We design the action space, derived from the intersection of the robot's kinematic limits and the convex region, to enable efficient sampling of inherently collision-free reference points. These actions assists in guiding the robot to move towards the goal and interact with other obstacles during navigation. (3) We employ model predictive control (MPC) to track the trajectory formed by the reference points while satisfying constraints imposed by the convex obstacle-free region and the robot's kinodynamic limits. The effectiveness of proposed improvements has been validated through two sets of ablation studies and a comparative experiment against the Timed Elastic Band (TEB), demonstrating improved navigation performance in crowded and complex environments.
The Skolem problem is a long-standing open problem in linear dynamical systems: can a linear recurrence sequence (LRS) ever reach 0 from a given initial configuration? Similarly, the positivity problem asks whether the LRS stays positive from an initial configuration. Deciding Skolem (or positivity) has been open for half a century: the best known decidability results are for LRS with special properties (e.g., low order recurrences). But these problems are easier for "uninitialized" variants, where the initial configuration is not fixed but can vary arbitrarily: checking if there is an initial configuration from which the LRS stays positive can be decided in polynomial time (Tiwari in 2004, Braverman in 2006). In this paper, we consider problems that lie between the initialized and uninitialized variants. More precisely, we ask if 0 (resp. negative numbers) can be avoided from every initial configuration in a neighborhood of a given initial configuration. This can be considered as a robust variant of the Skolem (resp. positivity) problem. We show that these problems lie at the frontier of decidability: if the neighbourhood is given as part of the input, then robust Skolem and robust positivity are Diophantine hard, i.e., solving either would entail major breakthroughs in Diophantine approximations, as happens for (non-robust) positivity. However, if one asks whether such a neighbourhood exists, then the problems turn out to be decidable with PSPACE complexity. Our techniques also allow us to tackle robustness for ultimate positivity, which asks whether there is a bound on the number of steps after which the LRS remains positive. There are two variants depending on whether we ask for a "uniform" bound on this number of steps. For the non-uniform variant, when the neighbourhood is open, the problem turns out to be tractable, even when the neighbourhood is given as input.
Designing control policies for stabilization tasks with provable guarantees is a long-standing problem in nonlinear control. A crucial performance metric is the size of the resulting region of attraction, which essentially serves as a robustness "margin" of the closed-loop system against uncertainties. In this paper, we propose a new method to train a stabilizing neural network controller along with its corresponding Lyapunov certificate, aiming to maximize the resulting region of attraction while respecting the actuation constraints. Crucial to our approach is the use of Zubov's Partial Differential Equation (PDE), which precisely characterizes the true region of attraction of a given control policy. Our framework follows an actor-critic pattern where we alternate between improving the control policy (actor) and learning a Zubov function (critic). Finally, we compute the largest certifiable region of attraction by invoking an SMT solver after the training procedure. Our numerical experiments on several design problems show consistent and significant improvements in the size of the resulting region of attraction.
Tracking climbers' activity to improve services and make the best use of their infrastructure is a concern for climbing gyms. Each climbing session must be analyzed from beginning till lowering of the climber. Therefore, spotting the climbers descending is crucial since it indicates when the ascent has come to an end. This problem must be addressed while preserving privacy and convenience of the climbers and the costs of the gyms. To this aim, a hardware prototype is developed to collect data using accelerometer sensors attached to a piece of climbing equipment mounted on the wall, called quickdraw, that connects the climbing rope to the bolt anchors. The corresponding sensors are configured to be energy-efficient, hence become practical in terms of expenses and time consumption for replacement when using in large quantity in a climbing gym. This paper describes hardware specifications, studies data measured by the sensors in ultra-low power mode, detect sensors' orientation patterns during lowering different routes, and develop an supervised approach to identify lowering.
Enterprises frequently enter into commercial contracts that can serve as vital sources of project-specific requirements. Contractual clauses are obligatory, and the requirements derived from contracts can detail the downstream implementation activities that non-legal stakeholders, including requirement analysts, engineers, and delivery personnel, need to conduct. However, comprehending contracts is cognitively demanding and error-prone for such stakeholders due to the extensive use of Legalese and the inherent complexity of contract language. Furthermore, contracts often contain ambiguously worded clauses to ensure comprehensive coverage. In contrast, non-legal stakeholders require a detailed and unambiguous comprehension of contractual clauses to craft actionable requirements. In this work, we introduce a novel legal NLP task that involves generating clarification questions for contracts. These questions aim to identify contract ambiguities on a document level, thereby assisting non-legal stakeholders in obtaining the necessary details for eliciting requirements. This task is challenged by three core issues: (1) data availability, (2) the length and unstructured nature of contracts, and (3) the complexity of legal text. To address these issues, we propose ConRAP, a retrieval-augmented prompting framework for generating clarification questions to disambiguate contractual text. Experiments conducted on contracts sourced from the publicly available CUAD dataset show that ConRAP with ChatGPT can detect ambiguities with an F2 score of 0.87. 70% of the generated clarification questions are deemed useful by human evaluators.
Classical methods for acoustic scene mapping require the estimation of time difference of arrival (TDOA) between microphones. Unfortunately, TDOA estimation is very sensitive to reverberation and additive noise. We introduce an unsupervised data-driven approach that exploits the natural structure of the data. Our method builds upon local conformal autoencoders (LOCA) - an offline deep learning scheme for learning standardized data coordinates from measurements. Our experimental setup includes a microphone array that measures the transmitted sound source at multiple locations across the acoustic enclosure. We demonstrate that LOCA learns a representation that is isometric to the spatial locations of the microphones. The performance of our method is evaluated using a series of realistic simulations and compared with other dimensionality-reduction schemes. We further assess the influence of reverberation on the results of LOCA and show that it demonstrates considerable robustness.
Big models have achieved revolutionary breakthroughs in the field of AI, but they might also pose potential concerns. Addressing such concerns, alignment technologies were introduced to make these models conform to human preferences and values. Despite considerable advancements in the past year, various challenges lie in establishing the optimal alignment strategy, such as data cost and scalable oversight, and how to align remains an open question. In this survey paper, we comprehensively investigate value alignment approaches. We first unpack the historical context of alignment tracing back to the 1920s (where it comes from), then delve into the mathematical essence of alignment (what it is), shedding light on the inherent challenges. Following this foundation, we provide a detailed examination of existing alignment methods, which fall into three categories: Reinforcement Learning, Supervised Fine-Tuning, and In-context Learning, and demonstrate their intrinsic connections, strengths, and limitations, helping readers better understand this research area. In addition, two emerging topics, personal alignment, and multimodal alignment, are also discussed as novel frontiers in this field. Looking forward, we discuss potential alignment paradigms and how they could handle remaining challenges, prospecting where future alignment will go.
Feint actions refer to a set of deceptive actions, which enable players to obtain temporal advantages from their opponents. Such actions are regarded as widely-used tactic in most non-deterministic Two-player Games (e.g. boxing and fencing). However, existing literature does not provide comprehensive and concrete formalization on Feint actions, and their implications on Two-Player Games. We argue that a full exploration on Feint actions is of great importance towards more realistic Two-player Games. In this paper, we provide the first comprehensive and concrete formalization of Feint actions. The key idea of our work is to (1) allow automatic generation of Feint actions, via our proposed Palindrome-directed Generation of Feint actions; and (2) provide concrete principles to properly combine Feint and attack actions. Based on our formalization of Feint actions, we also explore the implications on the game strategy model, and provide optimizations to better incorporate Feint actions. Our experimental results shows that accounting for Feint actions in Non-Deterministic Games (1) brings overall benefits to the game design; and (2) has great benefits on on either game animations or strategy designs, which also introduces a great extent of randomness into randomness-demanded Game models.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.