Designing control policies for stabilization tasks with provable guarantees is a long-standing problem in nonlinear control. A crucial performance metric is the size of the resulting region of attraction, which essentially serves as a robustness "margin" of the closed-loop system against uncertainties. In this paper, we propose a new method to train a stabilizing neural network controller along with its corresponding Lyapunov certificate, aiming to maximize the resulting region of attraction while respecting the actuation constraints. Crucial to our approach is the use of Zubov's Partial Differential Equation (PDE), which precisely characterizes the true region of attraction of a given control policy. Our framework follows an actor-critic pattern where we alternate between improving the control policy (actor) and learning a Zubov function (critic). Finally, we compute the largest certifiable region of attraction by invoking an SMT solver after the training procedure. Our numerical experiments on several design problems show consistent and significant improvements in the size of the resulting region of attraction.
Diffusion-based technologies have made significant strides, particularly in personalized and customized facialgeneration. However, existing methods face challenges in achieving high-fidelity and detailed identity (ID)consistency, primarily due to insufficient fine-grained control over facial areas and the lack of a comprehensive strategy for ID preservation by fully considering intricate facial details and the overall face. To address these limitations, we introduce ConsistentID, an innovative method crafted for diverseidentity-preserving portrait generation under fine-grained multimodal facial prompts, utilizing only a single reference image. ConsistentID comprises two key components: a multimodal facial prompt generator that combines facial features, corresponding facial descriptions and the overall facial context to enhance precision in facial details, and an ID-preservation network optimized through the facial attention localization strategy, aimed at preserving ID consistency in facial regions. Together, these components significantly enhance the accuracy of ID preservation by introducing fine-grained multimodal ID information from facial regions. To facilitate training of ConsistentID, we present a fine-grained portrait dataset, FGID, with over 500,000 facial images, offering greater diversity and comprehensiveness than existing public facial datasets. % such as LAION-Face, CelebA, FFHQ, and SFHQ. Experimental results substantiate that our ConsistentID achieves exceptional precision and diversity in personalized facial generation, surpassing existing methods in the MyStyle dataset. Furthermore, while ConsistentID introduces more multimodal ID information, it maintains a fast inference speed during generation.
Many effect systems for algebraic effect handlers are designed to guarantee that all invoked effects are handled adequately. However, respective researchers have developed their own effect systems that differ in how to represent the collections of effects that may happen. This situation results in blurring what is required for the representation and manipulation of effect collections in a safe effect system. In this work, we present a language ${\lambda_{\mathrm{EA}}}$ equipped with an effect system that abstracts the existing effect systems for algebraic effect handlers. The effect system of ${\lambda_{\mathrm{EA}}}$ is parameterized over effect algebras, which abstract the representation and manipulation of effect collections in safe effect systems. We prove the type-and-effect safety of ${\lambda_{\mathrm{EA}}}$ by assuming that a given effect algebra meets certain properties called safety conditions. As a result, we can obtain the safety properties of a concrete effect system by proving that an effect algebra corresponding to the concrete system meets the safety conditions. We also show that effect algebras meeting the safety conditions are expressive enough to accommodate some existing effect systems, each of which represents effect collections in a different style. Our framework can also differentiate the safety aspects of the effect collections of the existing effect systems. To this end, we extend ${\lambda_{\mathrm{EA}}}$ and the safety conditions to lift coercions and type-erasure semantics, propose other effect algebras including ones for which no effect system has been studied in the literature, and compare which effect algebra is safe and which is not for the extensions.
Linking a claim to grounded references is a critical ability to fulfill human demands for authentic and reliable information. Current studies are limited to specific tasks like information retrieval or semantic matching, where the claim-reference relationships are unique and fixed, while the referential knowledge linking (RKL) in real-world can be much more diverse and complex. In this paper, we propose universal referential knowledge linking (URL), which aims to resolve diversified referential knowledge linking tasks by one unified model. To this end, we propose a LLM-driven task-instructed representation compression, as well as a multi-view learning approach, in order to effectively adapt the instruction following and semantic understanding abilities of LLMs to referential knowledge linking. Furthermore, we also construct a new benchmark to evaluate ability of models on referential knowledge linking tasks across different scenarios. Experiments demonstrate that universal RKL is challenging for existing approaches, while the proposed framework can effectively resolve the task across various scenarios, and therefore outperforms previous approaches by a large margin.
With the success of large language models, generative retrieval has emerged as a new retrieval technique for recommendation. It can be divided into two stages: the first stage involves constructing discrete Codes (i.e., codes), and the second stage involves decoding the code sequentially via the transformer architecture. Current methods often construct item semantic codes by reconstructing based quantization on item textual representation, but they fail to capture item discrepancy that is essential in modeling item relationships in recommendation sytems. In this paper, we propose to construct the code representation of items by simultaneously considering both item relationships and semantic information. Specifically, we employ a pre-trained language model to extract item's textual description and translate it into item's embedding. Then we propose to enhance the encoder-decoder based RQVAE model with contrastive objectives to learn item code. To be specific, we employ the embeddings generated by the decoder from the samples themselves as positive instances and those from other samples as negative instances. Thus we effectively enhance the item discrepancy across all items, better preserving the item neighbourhood. Finally, we train and test semantic code with with generative retrieval on a sequential recommendation model. Our experiments demonstrate that our method improves NDCG@5 with 43.76% on the MIND dataset and Recall@10 with 80.95% on the Office dataset compared to the previous baselines.
Controller tuning and parameter optimization are crucial in system design to improve closed-loop system performance. Bayesian optimization has been established as an efficient model-free controller tuning and adaptation method. However, Bayesian optimization methods are computationally expensive and therefore difficult to use in real-time critical scenarios. In this work, we propose a real-time purely data-driven, model-free approach for adaptive control, by online tuning low-level controller parameters. We base our algorithm on GoOSE, an algorithm for safe and sample-efficient Bayesian optimization, for handling performance and stability criteria. We introduce multiple computational and algorithmic modifications for computational efficiency and parallelization of optimization steps. We further evaluate the algorithm's performance on a real precision-motion system utilized in semiconductor industry applications by modifying the payload and reference stepsize and comparing it to an interpolated constrained optimization-based baseline approach.
Accurate uncertainty estimates are important in sequential model-based decision-making tasks such as Bayesian optimization. However, these estimates can be imperfect if the data violates assumptions made by the model (e.g., Gaussianity). This paper studies which uncertainties are needed in model-based decision-making and in Bayesian optimization, and argues that uncertainties can benefit from calibration -- i.e., an 80% predictive interval should contain the true outcome 80% of the time. Maintaining calibration, however, can be challenging when the data is non-stationary and depends on our actions. We propose using simple algorithms based on online learning to provably maintain calibration on non-i.i.d. data, and we show how to integrate these algorithms in Bayesian optimization with minimal overhead. Empirically, we find that calibrated Bayesian optimization converges to better optima in fewer steps, and we demonstrate improved performance on standard benchmark functions and hyperparameter optimization tasks.
Evaluating retrieval-augmented generation (RAG) presents challenges, particularly for retrieval models within these systems. Traditional end-to-end evaluation methods are computationally expensive. Furthermore, evaluation of the retrieval model's performance based on query-document relevance labels shows a small correlation with the RAG system's downstream performance. We propose a novel evaluation approach, eRAG, where each document in the retrieval list is individually utilized by the large language model within the RAG system. The output generated for each document is then evaluated based on the downstream task ground truth labels. In this manner, the downstream performance for each document serves as its relevance label. We employ various downstream task metrics to obtain document-level annotations and aggregate them using set-based or ranking metrics. Extensive experiments on a wide range of datasets demonstrate that eRAG achieves a higher correlation with downstream RAG performance compared to baseline methods, with improvements in Kendall's $\tau$ correlation ranging from 0.168 to 0.494. Additionally, eRAG offers significant computational advantages, improving runtime and consuming up to 50 times less GPU memory than end-to-end evaluation.
In engineering, accurately modeling nonlinear dynamic systems from data contaminated by noise is both essential and complex. Established Sequential Monte Carlo (SMC) methods, used for the Bayesian identification of these systems, facilitate the quantification of uncertainty in the parameter identification process. A significant challenge in this context is the numerical integration of continuous-time ordinary differential equations (ODEs), crucial for aligning theoretical models with discretely sampled data. This integration introduces additional numerical uncertainty, a factor that is often over looked. To address this issue, the field of probabilistic numerics combines numerical methods, such as numerical integration, with probabilistic modeling to offer a more comprehensive analysis of total uncertainty. By retaining the accuracy of classical deterministic methods, these probabilistic approaches offer a deeper understanding of the uncertainty inherent in the inference process. This paper demonstrates the application of a probabilistic numerical method for solving ODEs in the joint parameter-state identification of nonlinear dynamic systems. The presented approach efficiently identifies latent states and system parameters from noisy measurements. Simultaneously incorporating probabilistic solutions to the ODE in the identification challenge. The methodology's primary advantage lies in its capability to produce posterior distributions over system parameters, thereby representing the inherent uncertainties in both the data and the identification process.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.