亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Controller tuning and parameter optimization are crucial in system design to improve closed-loop system performance. Bayesian optimization has been established as an efficient model-free controller tuning and adaptation method. However, Bayesian optimization methods are computationally expensive and therefore difficult to use in real-time critical scenarios. In this work, we propose a real-time purely data-driven, model-free approach for adaptive control, by online tuning low-level controller parameters. We base our algorithm on GoOSE, an algorithm for safe and sample-efficient Bayesian optimization, for handling performance and stability criteria. We introduce multiple computational and algorithmic modifications for computational efficiency and parallelization of optimization steps. We further evaluate the algorithm's performance on a real precision-motion system utilized in semiconductor industry applications by modifying the payload and reference stepsize and comparing it to an interpolated constrained optimization-based baseline approach.

相關內容

Contemporary practices in instruction tuning often hinge on enlarging data scaling without a clear strategy for ensuring data quality, inadvertently introducing noise that may compromise model performance. To address this challenge, we introduce \textsc{Nuggets}, a novel and efficient methodology that leverages one-shot learning to discern and select high-quality instruction data from extensive datasets. \textsc{Nuggets} assesses the potential of individual instruction examples to act as effective one-shot learning instances, thereby identifying those that can significantly improve performance across diverse tasks. \textsc{Nuggets} utilizes a scoring system based on the impact of candidate examples on the perplexity of a diverse anchor set, facilitating the selection of the most advantageous data for instruction tuning. Through comprehensive evaluations on two benchmarks, including MT-Bench and Alpaca-Eval, we show that instruction tuning with the top 1\% of examples curated by \textsc{Nuggets} substantially outperforms conventional methods employing the entire dataset.

Standard fine-tuning is considered not as effective as specialized methods for model editing due to its comparatively poor performance. However, it is simple, agnostic to the architectural details of the model being edited, and able to leverage advances in standard training techniques with no additional work (e.g., black-box PEFT for computational efficiency), making it an appealing choice for a model editor. In this work, we show that standard fine-tuning alone can yield competitive model editing performance with two minor modifications. First, we optimize the conditional likelihood rather than the full likelihood. Second, in addition to the typical practice of training on randomly paraphrased edit prompts to encourage generalization, we also train on random or similar unedited facts to encourage locality. Our experiments on the ZsRE and CounterFact datasets demonstrate that these simple modifications allow standard fine-tuning to match or outperform highly specialized editors in terms of edit score.

The diffusion model has shown success in generating high-quality and diverse solutions to trajectory optimization problems. However, diffusion models with neural networks inevitably make prediction errors, which leads to constraint violations such as unmet goals or collisions. This paper presents a novel constraint-aware diffusion model for trajectory optimization. We introduce a novel hybrid loss function for training that minimizes the constraint violation of diffusion samples compared to the groundtruth while recovering the original data distribution. Our model is demonstrated on tabletop manipulation and two-car reach-avoid problems, outperforming traditional diffusion models in minimizing constraint violations while generating samples close to locally optimal solutions.

Monocular visual odometry is a key technology in a wide variety of autonomous systems. Relative to traditional feature-based methods, that suffer from failures due to poor lighting, insufficient texture, large motions, etc., recent learning-based SLAM methods exploit iterative dense bundle adjustment to address such failure cases and achieve robust accurate localization in a wide variety of real environments, without depending on domain-specific training data. However, despite its potential, learning-based SLAM still struggles with scenarios involving large motion and object dynamics. In this paper, we diagnose key weaknesses in a popular learning-based SLAM model (DROID-SLAM) by analyzing major failure cases on outdoor benchmarks and exposing various shortcomings of its optimization process. We then propose the use of self-supervised priors leveraging a frozen large-scale pre-trained monocular depth estimation to initialize the dense bundle adjustment process, leading to robust visual odometry without the need to fine-tune the SLAM backbone. Despite its simplicity, our proposed method demonstrates significant improvements on KITTI odometry, as well as the challenging DDAD benchmark. Code and pre-trained models will be released upon publication.

Despite the strong performance of Transformers, their quadratic computation complexity presents challenges in applying them to vision tasks. Automatic pruning is one of effective methods for reducing computation complexity without heuristic approaches. However, directly applying it to multi-head attention is not straightforward due to channel misalignment. In this paper, we propose an automatic channel pruning method to take into account the multi-head attention mechanism. First, we incorporate channel similarity-based weights into the pruning indicator to preserve more informative channels in each head. Then, we adjust pruning indicator to enforce removal of channels in equal proportions across all heads, preventing the channel misalignment. We also add a reweight module to compensate for information loss resulting from channel removal, and an effective initialization step for pruning indicator based on difference of attention between original structure and each channel. Our proposed method can be used to not only original attention, but also linear attention, which is more efficient as linear complexity with respect to the number of tokens. On ImageNet-1K, applying our pruning method to the FLattenTransformer, which includes both attention mechanisms, shows outperformed accuracy for several MACs compared with previous state-of-the-art efficient models and pruned methods. Code will be available soon.

The application of artificial intelligence to simulate air-to-air combat scenarios is attracting increasing attention. To date the high-dimensional state and action spaces, the high complexity of situation information (such as imperfect and filtered information, stochasticity, incomplete knowledge about mission targets) and the nonlinear flight dynamics pose significant challenges for accurate air combat decision-making. These challenges are exacerbated when multiple heterogeneous agents are involved. We propose a hierarchical multi-agent reinforcement learning framework for air-to-air combat with multiple heterogeneous agents. In our framework, the decision-making process is divided into two stages of abstraction, where heterogeneous low-level policies control the action of individual units, and a high-level commander policy issues macro commands given the overall mission targets. Low-level policies are trained for accurate unit combat control. Their training is organized in a learning curriculum with increasingly complex training scenarios and league-based self-play. The commander policy is trained on mission targets given pre-trained low-level policies. The empirical validation advocates the advantages of our design choices.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

Knowledge graph (KG) embeddings learn low-dimensional representations of entities and relations to predict missing facts. KGs often exhibit hierarchical and logical patterns which must be preserved in the embedding space. For hierarchical data, hyperbolic embedding methods have shown promise for high-fidelity and parsimonious representations. However, existing hyperbolic embedding methods do not account for the rich logical patterns in KGs. In this work, we introduce a class of hyperbolic KG embedding models that simultaneously capture hierarchical and logical patterns. Our approach combines hyperbolic reflections and rotations with attention to model complex relational patterns. Experimental results on standard KG benchmarks show that our method improves over previous Euclidean- and hyperbolic-based efforts by up to 6.1% in mean reciprocal rank (MRR) in low dimensions. Furthermore, we observe that different geometric transformations capture different types of relations while attention-based transformations generalize to multiple relations. In high dimensions, our approach yields new state-of-the-art MRRs of 49.6% on WN18RR and 57.7% on YAGO3-10.

北京阿比特科技有限公司