亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Human Pose Estimation (HPE) to assess human motion in sports, rehabilitation or work safety requires accurate sensing without compromising the sensitive underlying personal data. Therefore, local processing is necessary and the limited energy budget in such systems can be addressed by Inertial Measurement Units (IMU) instead of common camera sensing. The central trade-off between accuracy and efficient use of hardware resources is rarely discussed in research. We address this trade-off by a simulative Design Space Exploration (DSE) of a varying quantity and positioning of IMU-sensors. First, we generate IMU-data from a publicly available body model dataset for different sensor configurations and train a deep learning model with this data. Additionally, we propose a combined metric to assess the accuracy-resource trade-off. We used the DSE as a tool to evaluate sensor configurations and identify beneficial ones for a specific use case. Exemplary, for a system with equal importance of accuracy and resources, we identify an optimal sensor configuration of 4 sensors with a mesh error of 6.03 cm, increasing the accuracy by 32.7% and reducing the hardware effort by two sensors compared to state of the art. Our work can be used to design health applications with well-suited sensor positioning and attention to data privacy and resource-awareness.

相關內容

傳感(gan)器(英(ying)文名稱:transducer/sensor)是一(yi)種(zhong)檢測(ce)裝置,能感(gan)受(shou)到被測(ce)量的(de)信息,并能將感(gan)受(shou)到的(de)信息,按一(yi)定(ding)規律變換成為電信號(hao)或(huo)其他所需形式的(de)信息輸出,以滿足(zu)信息的(de)傳輸、處理、存儲、顯(xian)示、記錄(lu)和控(kong)制等(deng)要求。

Reinforcement Learning with Human Feedback (RLHF) has received significant attention for performing tasks without the need for costly manual reward design by aligning human preferences. It is crucial to consider diverse human feedback types and various learning methods in different environments. However, quantifying progress in RLHF with diverse feedback is challenging due to the lack of standardized annotation platforms and widely used unified benchmarks. To bridge this gap, we introduce Uni-RLHF, a comprehensive system implementation tailored for RLHF. It aims to provide a complete workflow from real human feedback, fostering progress in the development of practical problems. Uni-RLHF contains three packages: 1) a universal multi-feedback annotation platform, 2) large-scale crowdsourced feedback datasets, and 3) modular offline RLHF baseline implementations. Uni-RLHF develops a user-friendly annotation interface tailored to various feedback types, compatible with a wide range of mainstream RL environments. We then establish a systematic pipeline of crowdsourced annotations, resulting in large-scale annotated datasets comprising more than 15 million steps across 30+ popular tasks. Through extensive experiments, the results in the collected datasets demonstrate competitive performance compared to those from well-designed manual rewards. We evaluate various design choices and offer insights into their strengths and potential areas of improvement. We wish to build valuable open-source platforms, datasets, and baselines to facilitate the development of more robust and reliable RLHF solutions based on realistic human feedback. The website is available at //uni-rlhf.github.io/.

Explainable Artificial Intelligence (XAI) strategies play a crucial part in increasing the understanding and trustworthiness of neural networks. Nonetheless, these techniques could potentially generate misleading explanations. Blinding attacks can drastically alter a machine learning algorithm's prediction and explanation, providing misleading information by adding visually unnoticeable artifacts into the input, while maintaining the model's accuracy. It poses a serious challenge in ensuring the reliability of XAI methods. To ensure the reliability of XAI methods poses a real challenge, we leverage statistical analysis to highlight the changes in CNN weights within a CNN following blinding attacks. We introduce a method specifically designed to limit the effectiveness of such attacks during the evaluation phase, avoiding the need for extra training. The method we suggest defences against most modern explanation-aware adversarial attacks, achieving an approximate decrease of ~99\% in the Attack Success Rate (ASR) and a ~91\% reduction in the Mean Square Error (MSE) between the original explanation and the defended (post-attack) explanation across three unique types of attacks.

Multimodal Large Language Models (MLLMs) have showcased impressive skills in tasks related to visual understanding and reasoning. Yet, their widespread application faces obstacles due to the high computational demands during both the training and inference phases, restricting their use to a limited audience within the research and user communities. In this paper, we investigate the design aspects of Multimodal Small Language Models (MSLMs) and propose an efficient multimodal assistant named Mipha, which is designed to create synergy among various aspects: visual representation, language models, and optimization strategies. We show that without increasing the volume of training data, our Mipha-3B outperforms the state-of-the-art large MLLMs, especially LLaVA-1.5-13B, on multiple benchmarks. Through detailed discussion, we provide insights and guidelines for developing strong MSLMs that rival the capabilities of MLLMs. Our code is available at //github.com/zhuyiche/llava-phi.

The adoption of Artificial Intelligence in Education (AIED) holds the promise of revolutionizing educational practices by offering personalized learning experiences, automating administrative and pedagogical tasks, and reducing the cost of content creation. However, the lack of standardized practices in the development and deployment of AIED solutions has led to fragmented ecosystems, which presents challenges in interoperability, scalability, and ethical governance. This article aims to address the critical need to develop and implement industry standards in AIED, offering a comprehensive analysis of the current landscape, challenges, and strategic approaches to overcome these obstacles. We begin by examining the various applications of AIED in various educational settings and identify key areas lacking in standardization, including system interoperability, ontology mapping, data integration, evaluation, and ethical governance. Then, we propose a multi-tiered framework for establishing robust industry standards for AIED. In addition, we discuss methodologies for the iterative development and deployment of standards, incorporating feedback loops from real-world applications to refine and adapt standards over time. The paper also highlights the role of emerging technologies and pedagogical theories in shaping future standards for AIED. Finally, we outline a strategic roadmap for stakeholders to implement these standards, fostering a cohesive and ethical AIED ecosystem. By establishing comprehensive industry standards, such as those by IEEE Artificial Intelligence Standards Committee (AISC) and International Organization for Standardization (ISO), we can accelerate and scale AIED solutions to improve educational outcomes, ensuring that technological advances align with the principles of inclusivity, fairness, and educational excellence.

Modern Large Language Models (LLMs) are capable of following long and complex instructions that enable a diverse amount of user tasks. However, despite Information Retrieval (IR) models using LLMs as the backbone of their architectures, nearly all of them still only take queries as input, with no instructions. For the handful of recent models that do take instructions, it's unclear how they use them. We introduce our dataset FollowIR, which contains a rigorous instruction evaluation benchmark as well as a training set for helping IR models learn to better follow real-world instructions. FollowIR builds off the long history of the TREC conferences: as TREC provides human annotators with instructions (also known as narratives) to determine document relevance, so should IR models be able to understand and decide relevance based on these detailed instructions. Our evaluation benchmark starts with three deeply judged TREC collections and alters the annotator instructions, re-annotating relevant documents. Through this process, we can measure how well IR models follow instructions, through a new pairwise evaluation framework. Our results indicate that existing retrieval models fail to correctly use instructions, using them for basic keywords and struggling to understand long-form information. However, we show that it is possible for IR models to learn to follow complex instructions: our new FollowIR-7B model has significant improvements (over 13%) after fine-tuning on our training set.

Environmental perception in Automated Valet Parking (AVP) has been a challenging task due to severe occlusions in parking garages. Although Collaborative Perception (CP) can be applied to broaden the field of view of connected vehicles, the limited bandwidth of vehicular communications restricts its application. In this work, we propose a BEV feature-based CP network architecture for infrastructure-assisted AVP systems. The model takes the roadside camera and LiDAR as optional inputs and adaptively fuses them with onboard sensors in a unified BEV representation. Autoencoder and downsampling are applied for channel-wise and spatial-wise dimension reduction, while sparsification and quantization further compress the feature map with little loss in data precision. Combining these techniques, the size of a BEV feature map is effectively compressed to fit in the feasible data rate of the NR-V2X network. With the synthetic AVP dataset, we observe that CP can effectively increase perception performance, especially for pedestrians. Moreover, the advantage of infrastructure-assisted CP is demonstrated in two typical safety-critical scenarios in the AVP setting, increasing the maximum safe cruising speed by up to 3m/s in both scenarios.

Collaborative Mobile Crowdsourcing (CMCS) allows platforms to recruit worker teams to collaboratively execute complex sensing tasks. The efficiency of such collaborations could be influenced by trust relationships among workers. To obtain the asymmetric trust values among all workers in the social network, the Trust Reinforcement Evaluation Framework (TREF) based on Graph Convolutional Neural Networks (GCNs) is proposed in this paper. The task completion effect is comprehensively calculated by considering the workers' ability benefits, distance benefits, and trust benefits in this paper. The worker recruitment problem is modeled as an Undirected Complete Recruitment Graph (UCRG), for which a specific Tabu Search Recruitment (TSR) algorithm solution is proposed. An optimal execution team is recruited for each task by the TSR algorithm, and the collaboration team for the task is obtained under the constraint of privacy loss. To enhance the efficiency of the recruitment algorithm on a large scale and scope, the Mini-Batch K-Means clustering algorithm and edge computing technology are introduced, enabling distributed worker recruitment. Lastly, extensive experiments conducted on five real datasets validate that the recruitment algorithm proposed in this paper outperforms other baselines. Additionally, TREF proposed herein surpasses the performance of state-of-the-art trust evaluation methods in the literature.

Instruction-tuned LLMs can respond to explicit queries formulated as prompts, which greatly facilitates interaction with human users. However, prompt-based approaches might not always be able to tap into the wealth of implicit knowledge acquired by LLMs during pre-training. This paper presents a comprehensive study of ways to evaluate semantic plausibility in LLMs. We compare base and instruction-tuned LLM performance on an English sentence plausibility task via (a) explicit prompting and (b) implicit estimation via direct readout of the probabilities models assign to strings. Experiment 1 shows that, across model architectures and plausibility datasets, (i) log likelihood ($\textit{LL}$) scores are the most reliable indicator of sentence plausibility, with zero-shot prompting yielding inconsistent and typically poor results; (ii) $\textit{LL}$-based performance is still inferior to human performance; (iii) instruction-tuned models have worse $\textit{LL}$-based performance than base models. In Experiment 2, we show that $\textit{LL}$ scores across models are modulated by context in the expected way, showing high performance on three metrics of context-sensitive plausibility and providing a direct match to explicit human plausibility judgments. Overall, $\textit{LL}$ estimates remain a more reliable measure of plausibility in LLMs than direct prompting.

The factuality of large language model (LLMs) tends to decay over time since events posterior to their training are "unknown" to them. One way to keep models up-to-date could be factual update: the task of inserting, replacing, or removing certain simple (atomic) facts within the model. To study this task, we present WikiFactDiff, a dataset that describes the evolution of factual knowledge between two dates as a collection of simple facts divided into three categories: new, obsolete, and static. We describe several update scenarios arising from various combinations of these three types of basic update. The facts are represented by subject-relation-object triples; indeed, WikiFactDiff was constructed by comparing the state of the Wikidata knowledge base at 4 January 2021 and 27 February 2023. Those fact are accompanied by verbalization templates and cloze tests that enable running update algorithms and their evaluation metrics. Contrary to other datasets, such as zsRE and CounterFact, WikiFactDiff constitutes a realistic update setting that involves various update scenarios, including replacements, archival, and new entity insertions. We also present an evaluation of existing update algorithms on WikiFactDiff.

The 3D Gaussian splatting method has drawn a lot of attention, thanks to its high performance in training and high quality of the rendered image. However, it uses anisotropic Gaussian kernels to represent the scene. Although such anisotropic kernels have advantages in representing the geometry, they lead to difficulties in terms of computation, such as splitting or merging two kernels. In this paper, we propose to use isotropic Gaussian kernels to avoid such difficulties in the computation, leading to a higher performance method. The experiments confirm that the proposed method is about {\bf 100X} faster without losing the geometry representation accuracy. The proposed method can be applied in a large range applications where the radiance field is needed, such as 3D reconstruction, view synthesis, and dynamic object modeling.

北京阿比特科技有限公司