亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In order to coordinate players in a game must first identify a target pattern of behaviour. In this paper we investigate the difficulty of identifying prominent outcomes in two kinds of binary action coordination problems in social networks: pure coordination games and anti-coordination games. For both environments, we determine the computational complexity of finding a strategy profile that (i) maximises welfare, (ii) maximises welfare subject to being an equilibrium, and (iii) maximises potential. We show that the complexity of these objectives can vary with the type of coordination problem. Objectives (i) and (iii) are tractable problems in pure coordination games, but for anti-coordination games are NP-hard. Objective (ii), finding the best Nash equilibrium, is NP-hard for both. Our results support the idea that environments in which actions are strategic complements (e.g., technology adoption) facilitate successful coordination more readily than those in which actions are strategic substitutes (e.g., public good provision).

相關內容

We study the problem of testing whether the missing values of a potentially high-dimensional dataset are Missing Completely at Random (MCAR). We relax the problem of testing MCAR to the problem of testing the compatibility of a sequence of covariance matrices, motivated by the fact that this procedure is feasible when the dimension grows with the sample size. Tests of compatibility can be used to test the feasibility of positive semi-definite matrix completion problems with noisy observations, and thus our results may be of independent interest. Our first contributions are to define a natural measure of the incompatibility of a sequence of correlation matrices, which can be characterised as the optimal value of a Semi-definite Programming (SDP) problem, and to establish a key duality result allowing its practical computation and interpretation. By studying the concentration properties of the natural plug-in estimator of this measure, we introduce novel hypothesis tests that we prove have power against all distributions with incompatible covariance matrices. The choice of critical values for our tests rely on a new concentration inequality for the Pearson sample correlation matrix, which may be of interest more widely. By considering key examples of missingness structures, we demonstrate that our procedures are minimax rate optimal in certain cases. We further validate our methodology with numerical simulations that provide evidence of validity and power, even when data are heavy tailed.

Stabbing Planes (also known as Branch and Cut) is a proof system introduced very recently which, informally speaking, extends the DPLL method by branching on integer linear inequalities instead of single variables. The techniques known so far to prove size and depth lower bounds for Stabbing Planes are generalizations of those used for the Cutting Planes proof system. For size lower bounds these are established by monotone circuit arguments, while for depth these are found via communication complexity and protection. As such these bounds apply for lifted versions of combinatorial statements. Rank lower bounds for Cutting Planes are also obtained by geometric arguments called protection lemmas. In this work we introduce two new geometric approaches to prove size/depth lower bounds in Stabbing Planes working for any formula: (1) the antichain method, relying on Sperner's Theorem and (2) the covering method which uses results on essential coverings of the boolean cube by linear polynomials, which in turn relies on Alon's combinatorial Nullenstellensatz. We demonstrate their use on classes of combinatorial principles such as the Pigeonhole principle, the Tseitin contradictions and the Linear Ordering Principle. By the first method we prove almost linear size lower bounds and optimal logarithmic depth lower bounds for the Pigeonhole principle and analogous lower bounds for the Tseitin contradictions over the complete graph and for the Linear Ordering Principle. By the covering method we obtain a superlinear size lower bound and a logarithmic depth lower bound for Stabbing Planes proof of Tseitin contradictions over a grid graph.

This paper will examine what makes a being intelligent, whether that be a biological being or an artificial silicon being on a computer. Special attention will be paid to the being having the ability to characterize and control a collective system of many identical conservative sub-systems conservatively interacting. The essence of intelligence will be found to be the golden rule -- "the collective acts as one" or "knowing the global consequences of local actions". The flow of the collective is a small set of twinkling textures, that are governed by a puppeteer who is pulling a small number of strings according to a geodesic motion of least action, determined by the symmetries. Controlling collective conservative systems is difficult and has historically been done by adding significant viscosity to the system to stabilize the desirable meta stable equilibriums of maximum performance, but it degrades or destroys them in the process. There is an alternative. Once the optimum twinkling textures of the meta stable equilibriums are identified by the intelligent being (that is the collective system is characterized), the collective system can be moved by the intelligent being to the optimum twinkling textures, then quickly vibrated by the intelligent being according to the textures so that the collective system remains at the meta stable equilibrium. Well educated intelligence knows the global consequences of its local actions so that it will not take short term actions that will lead to poor long term outcomes. In contrast, trained intelligence or trained stupidity will optimize its short term actions, leading to poor long term outcomes. Well educated intelligence is inherently good, but trained stupidity is inherently evil and should be feared. Particular attention is paid to the control and optimization of economic and social collectives.

In this paper, we define and study variants of several complexity classes of decision problems that are defined via some criteria on the number of accepting paths of an NPTM. In these variants, we modify the acceptance criteria so that they concern the total number of computation paths instead of the number of accepting ones. This direction reflects the relationship between the counting classes #P and TotP, which are the classes of functions that count the number of accepting paths and the total number of paths of NPTMs, respectively. The former is the well-studied class of counting versions of NP problems introduced by Valiant (1979). The latter contains all self-reducible counting problems in #P whose decision version is in P, among them prominent #P-complete problems such as Non-negative Permanent, #PerfMatch, and #DNF-Sat, thus playing a significant role in the study of approximable counting problems. We show that almost all classes introduced in this work coincide with their `#accepting paths'-definable counterparts, thus providing an alternative model of computation for them. Moreover, for each of these classes, we present a novel family of complete problems, which are defined via TotP-complete problems. This way, we show that all the aforementioned classes have complete problems that are defined via counting problems whose existence version is in P, in contrast to the standard way of obtaining completeness results via counting versions of NP-complete problems. To the best of our knowledge, prior to this work, such results were known only for parity-P and C=P.

In this paper, we propose the Ordered Median Tree Location Problem (OMT). The OMT is a single-allocation facility location problem where p facilities must be placed on a network connected by a non-directed tree. The objective is to minimize the sum of the ordered weighted averaged allocation costs plus the sum of the costs of connecting the facilities in the tree. We present different MILP formulations for the OMT based on properties of the minimum spanning tree problem and the ordered median optimization. Given that ordered median hub location problems are rather difficult to solve we have improved the OMT solution performance by introducing covering variables in a valid reformulation plus developing two pre-processing phases to reduce the size of this formulations. In addition, we propose a Benders decomposition algorithm to approach the OMT. We establish an empirical comparison between these new formulations and we also provide enhancements that together with a proper formulation allow to solve medium size instances on general random graphs.

Accent conversion aims to convert the accent of a source speech to a target accent, meanwhile preserving the speaker's identity. This paper introduces a novel non-autoregressive framework for accent conversion that learns accent-agnostic linguistic representations and employs them to convert the accent in the source speech. Specifically, the proposed system aligns speech representations with linguistic representations obtained from Text-to-Speech (TTS) systems, enabling training of the accent voice conversion model on non-parallel data. Furthermore, we investigate the effectiveness of a pretraining strategy on native data and different acoustic features within our proposed framework. We conduct a comprehensive evaluation using both subjective and objective metrics to assess the performance of our approach. The evaluation results highlight the benefits of the pretraining strategy and the incorporation of richer semantic features, resulting in significantly enhanced audio quality and intelligibility.

This paper looks at how ancient mathematicians (and especially the Pythagorean school) were faced by problems/paradoxes associated with the infinite which led them to juggle two systems of numbers: the discrete whole/rationals which were handled arithmetically and the continuous magnitude quantities which were handled geometrically. We look at how approximations and mixed numbers (whole numbers with fractions) helped develop the arithmetization of geometry and the development of mathematical analysis and real numbers.

Entanglement is a striking feature of quantum mechanics, and it has a key property called unextendibility. In this paper, we present a framework for quantifying and investigating the unextendibility of general bipartite quantum states. First, we define the unextendible entanglement, a family of entanglement measures based on the concept of a state-dependent set of free states. The intuition behind these measures is that the more entangled a bipartite state is, the less entangled each of its individual systems is with a third party. Second, we demonstrate that the unextendible entanglement is an entanglement monotone under two-extendible quantum operations, including local operations and one-way classical communication as a special case. Normalization and faithfulness are two other desirable properties of unextendible entanglement, which we establish here. We further show that the unextendible entanglement provides efficiently computable benchmarks for the rate of exact entanglement or secret key distillation, as well as the overhead of probabilistic entanglement or secret key distillation.

This paper does not describe a working system. Instead, it presents a single idea about representation which allows advances made by several different groups to be combined into an imaginary system called GLOM. The advances include transformers, neural fields, contrastive representation learning, distillation and capsules. GLOM answers the question: How can a neural network with a fixed architecture parse an image into a part-whole hierarchy which has a different structure for each image? The idea is simply to use islands of identical vectors to represent the nodes in the parse tree. If GLOM can be made to work, it should significantly improve the interpretability of the representations produced by transformer-like systems when applied to vision or language

Training a deep architecture using a ranking loss has become standard for the person re-identification task. Increasingly, these deep architectures include additional components that leverage part detections, attribute predictions, pose estimators and other auxiliary information, in order to more effectively localize and align discriminative image regions. In this paper we adopt a different approach and carefully design each component of a simple deep architecture and, critically, the strategy for training it effectively for person re-identification. We extensively evaluate each design choice, leading to a list of good practices for person re-identification. By following these practices, our approach outperforms the state of the art, including more complex methods with auxiliary components, by large margins on four benchmark datasets. We also provide a qualitative analysis of our trained representation which indicates that, while compact, it is able to capture information from localized and discriminative regions, in a manner akin to an implicit attention mechanism.

北京阿比特科技有限公司