亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cancer segmentation in whole-slide images is a fundamental step for viable tumour burden estimation, which is of great value for cancer assessment. However, factors like vague boundaries or small regions dissociated from viable tumour areas make it a challenging task. Considering the usefulness of multi-scale features in various vision-related tasks, we present a structure-aware scale-adaptive feature selection method for efficient and accurate cancer segmentation. Based on a segmentation network with a popular encoder-decoder architecture, a scale-adaptive module is proposed for selecting more robust features to represent the vague, non-rigid boundaries. Furthermore, a structural similarity metric is proposed for better tissue structure awareness to deal with small region segmentation. In addition, advanced designs including several attention mechanisms and the selective-kernel convolutions are applied to the baseline network for comparative study purposes. Extensive experimental results show that the proposed structure-aware scale-adaptive networks achieve outstanding performance on liver cancer segmentation when compared to top ten submitted results in the challenge of PAIP 2019. Further evaluation on colorectal cancer segmentation shows that the scale-adaptive module improves the baseline network or outperforms the other excellent designs of attention mechanisms when considering the tradeoff between efficiency and accuracy.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Temporal receptive fields of models play an important role in action segmentation. Large receptive fields facilitate the long-term relations among video clips while small receptive fields help capture the local details. Existing methods construct models with hand-designed receptive fields in layers. Can we effectively search for receptive field combinations to replace hand-designed patterns? To answer this question, we propose to find better receptive field combinations through a global-to-local search scheme. Our search scheme exploits both global search to find the coarse combinations and local search to get the refined receptive field combination patterns further. The global search finds possible coarse combinations other than human-designed patterns. On top of the global search, we propose an expectation guided iterative local search scheme to refine combinations effectively. Our global-to-local search can be plugged into existing action segmentation methods to achieve state-of-the-art performance.

Existing Earth Vision datasets are either suitable for semantic segmentation or object detection. In this work, we introduce the first benchmark dataset for instance segmentation in aerial imagery that combines instance-level object detection and pixel-level segmentation tasks. In comparison to instance segmentation in natural scenes, aerial images present unique challenges e.g., a huge number of instances per image, large object-scale variations and abundant tiny objects. Our large-scale and densely annotated Instance Segmentation in Aerial Images Dataset (iSAID) comes with 655,451 object instances for 15 categories across 2,806 high-resolution images. Such precise per-pixel annotations for each instance ensure accurate localization that is essential for detailed scene analysis. Compared to existing small-scale aerial image based instance segmentation datasets, iSAID contains 15$\times$ the number of object categories and 5$\times$ the number of instances. We benchmark our dataset using two popular instance segmentation approaches for natural images, namely Mask R-CNN and PANet. In our experiments we show that direct application of off-the-shelf Mask R-CNN and PANet on aerial images provide suboptimal instance segmentation results, thus requiring specialized solutions from the research community. The dataset is publicly available at: //captain-whu.github.io/iSAID/index.html

Sliding-window object detectors that generate bounding-box object predictions over a dense, regular grid have advanced rapidly and proven popular. In contrast, modern instance segmentation approaches are dominated by methods that first detect object bounding boxes, and then crop and segment these regions, as popularized by Mask R-CNN. In this work, we investigate the paradigm of dense sliding-window instance segmentation, which is surprisingly under-explored. Our core observation is that this task is fundamentally different than other dense prediction tasks such as semantic segmentation or bounding-box object detection, as the output at every spatial location is itself a geometric structure with its own spatial dimensions. To formalize this, we treat dense instance segmentation as a prediction task over 4D tensors and present a general framework called TensorMask that explicitly captures this geometry and enables novel operators on 4D tensors. We demonstrate that the tensor view leads to large gains over baselines that ignore this structure, and leads to results comparable to Mask R-CNN. These promising results suggest that TensorMask can serve as a foundation for novel advances in dense mask prediction and a more complete understanding of the task. Code will be made available.

In this paper, we propose a residual non-local attention network for high-quality image restoration. Without considering the uneven distribution of information in the corrupted images, previous methods are restricted by local convolutional operation and equal treatment of spatial- and channel-wise features. To address this issue, we design local and non-local attention blocks to extract features that capture the long-range dependencies between pixels and pay more attention to the challenging parts. Specifically, we design trunk branch and (non-)local mask branch in each (non-)local attention block. The trunk branch is used to extract hierarchical features. Local and non-local mask branches aim to adaptively rescale these hierarchical features with mixed attentions. The local mask branch concentrates on more local structures with convolutional operations, while non-local attention considers more about long-range dependencies in the whole feature map. Furthermore, we propose residual local and non-local attention learning to train the very deep network, which further enhance the representation ability of the network. Our proposed method can be generalized for various image restoration applications, such as image denoising, demosaicing, compression artifacts reduction, and super-resolution. Experiments demonstrate that our method obtains comparable or better results compared with recently leading methods quantitatively and visually.

Medical image segmentation is a primary task in many applications, and the accuracy of the segmentation is a necessity. Recently, many deep learning networks derived from U-Net have been extensively used and have achieved notable results. To further improve and refine the performance of U-Net, parallel decoders along with mask prediction decoder have been carried out and have shown significant improvement with additional advantages. In our work, we utilize the advantages of using a combination of contour and distance map as regularizers. In turn, we propose a novel architecture Psi-Net with a single encoder and three parallel decoders, one decoder to learn the mask and other two to learn the auxiliary tasks of contour detection and distance map estimation. The learning of these auxiliary tasks helps in capturing the shape and boundary. We also propose a new joint loss function for the proposed architecture. The loss function consists of a weighted combination of Negative likelihood and Mean Square Error loss. We have used two publicly available datasets: 1) Origa dataset for the task of optic cup and disc segmentation and 2) Endovis segment dataset for the task of polyp segmentation to evaluate our model. We have conducted extensive experiments using our network to show our model gives better results in terms of segmentation, boundary and shape metrics.

We propose a novel technique to incorporate attention within convolutional neural networks using feature maps generated by a separate convolutional autoencoder. Our attention architecture is well suited for incorporation with deep convolutional networks. We evaluate our model on benchmark segmentation datasets in skin cancer segmentation and lung lesion segmentation. Results show highly competitive performance when compared with U-Net and it's residual variant.

Radiologist is "doctor's doctor", biomedical image segmentation plays a central role in quantitative analysis, clinical diagnosis, and medical intervention. In the light of the fully convolutional networks (FCN) and U-Net, deep convolutional networks (DNNs) have made significant contributions in biomedical image segmentation applications. In this paper, based on U-Net, we propose MDUnet, a multi-scale densely connected U-net for biomedical image segmentation. we propose three different multi-scale dense connections for U shaped architectures encoder, decoder and across them. The highlights of our architecture is directly fuses the neighboring different scale feature maps from both higher layers and lower layers to strengthen feature propagation in current layer. Which can largely improves the information flow encoder, decoder and across them. Multi-scale dense connections, which means containing shorter connections between layers close to the input and output, also makes much deeper U-net possible. We adopt the optimal model based on the experiment and propose a novel Multi-scale Dense U-Net (MDU-Net) architecture with quantization. Which reduce overfitting in MDU-Net for better accuracy. We evaluate our purpose model on the MICCAI 2015 Gland Segmentation dataset (GlaS). The three multi-scale dense connections improve U-net performance by up to 1.8% on test A and 3.5% on test B in the MICCAI Gland dataset. Meanwhile the MDU-net with quantization achieves the superiority over U-Net performance by up to 3% on test A and 4.1% on test B.

We present an end-to-end method for the task of panoptic segmentation. The method makes instance segmentation and semantic segmentation predictions in a single network, and combines these outputs using heuristics to create a single panoptic segmentation output. The architecture consists of a ResNet-50 feature extractor shared by the semantic segmentation and instance segmentation branch. For instance segmentation, a Mask R-CNN type of architecture is used, while the semantic segmentation branch is augmented with a Pyramid Pooling Module. Results for this method are submitted to the COCO and Mapillary Joint Recognition Challenge 2018. Our approach achieves a PQ score of 17.6 on the Mapillary Vistas validation set and 27.2 on the COCO test-dev set.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

Attention networks in multimodal learning provide an efficient way to utilize given visual information selectively. However, the computational cost to learn attention distributions for every pair of multimodal input channels is prohibitively expensive. To solve this problem, co-attention builds two separate attention distributions for each modality neglecting the interaction between multimodal inputs. In this paper, we propose bilinear attention networks (BAN) that find bilinear attention distributions to utilize given vision-language information seamlessly. BAN considers bilinear interactions among two groups of input channels, while low-rank bilinear pooling extracts the joint representations for each pair of channels. Furthermore, we propose a variant of multimodal residual networks to exploit eight-attention maps of the BAN efficiently. We quantitatively and qualitatively evaluate our model on visual question answering (VQA 2.0) and Flickr30k Entities datasets, showing that BAN significantly outperforms previous methods and achieves new state-of-the-arts on both datasets.

北京阿比特科技有限公司