亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We prove a $k^{-\Omega(\log(\varepsilon_2 - \varepsilon_1))}$ lower bound for adaptively testing whether a Boolean function is $\varepsilon_1$-close to or $\varepsilon_2$-far from $k$-juntas. Our results provide the first superpolynomial separation between tolerant and non-tolerant testing for a natural property of boolean functions under the adaptive setting. Furthermore, our techniques generalize to show that adaptively testing whether a function is $\varepsilon_1$-close to a $k$-junta or $\varepsilon_2$-far from $(k + o(k))$-juntas cannot be done with $\textsf{poly} (k, (\varepsilon_2 - \varepsilon_1)^{-1})$ queries. This is in contrast to an algorithm by Iyer, Tal and Whitmeyer [CCC 2021] which uses $\textsf{poly} (k, (\varepsilon_2 - \varepsilon_1)^{-1})$ queries to test whether a function is $\varepsilon_1$-close to a $k$-junta or $\varepsilon_2$-far from $O(k/(\varepsilon_2-\varepsilon_1)^2)$-juntas.

相關內容

Test-Time Adaptation (TTA) has recently emerged as a promising approach for tackling the robustness challenge under distribution shifts. However, the lack of consistent settings and systematic studies in prior literature hinders thorough assessments of existing methods. To address this issue, we present TTAB, a test-time adaptation benchmark that encompasses ten state-of-the-art algorithms, a diverse array of distribution shifts, and two evaluation protocols. Through extensive experiments, our benchmark reveals three common pitfalls in prior efforts. First, selecting appropriate hyper-parameters, especially for model selection, is exceedingly difficult due to online batch dependency. Second, the effectiveness of TTA varies greatly depending on the quality and properties of the model being adapted. Third, even under optimal algorithmic conditions, none of the existing methods are capable of addressing all common types of distribution shifts. Our findings underscore the need for future research in the field to conduct rigorous evaluations on a broader set of models and shifts, and to re-examine the assumptions behind the empirical success of TTA. Our code is available at \url{//github.com/lins-lab/ttab}.

Factor model is a fundamental investment tool in quantitative investment, which can be empowered by deep learning to become more flexible and efficient in practical complicated investing situations. However, it is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting, where the model can adapt itself to match the current market regime identified based on only point-in-time market information. To tackle this problem, we propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the underlying relationship between the market situation and stock-wise latent factors, so that HireVAE can effectively estimate useful latent factors given only historical market information and subsequently predict accurate stock returns. Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods, verifying the potential of such online and adaptive factor model.

A \emph{covering array} is an $N \times k$ array of elements from a $v$-ary alphabet such that every $N \times t$ subarray contains all $v^t$ tuples from the alphabet of size $t$ at least $\lambda$ times; this is denoted as $\CA_\lambda(N; t, k, v)$. Covering arrays have applications in the testing of large-scale complex systems; in systems that are nondeterministic, increasing $\lambda$ gives greater confidence in the system's correctness. The \emph{covering array number}, $\CAN_\lambda(t,k,v)$ is the smallest number of rows for which a covering array on the other parameters exists. For general $\lambda$, only several nontrivial bounds are known, the smallest of which was asymptotically $\log k + \lambda \log \log k + o(\lambda)$ when $v, t$ are fixed. Additionally it has been conjectured that the $\log \log k$ term can be removed. First, we affirm the conjecture by deriving an asymptotically optimal bound for $\CAN_\lambda(t,k,v)$ for general $\lambda$ and when $v, t$ are constant using the Stein--Lov\'asz--Johnson paradigm. Second, we improve upon the constants of this method using the Lov\'asz local lemma. Third, when $\lambda=2$, we extend a two-stage paradigm of Sarkar and Colbourn that improves on the general bound and often produces better bounds than even when $\lambda=1$ of other results. Fourth, we extend this two-stage paradigm further for general $\lambda$ to obtain an even stronger upper bound, including using graph coloring. And finally, we determine a bound on how large $\lambda$ can be for when the number of rows is fixed.

Adaptive learning aims to provide customized educational activities (e.g., exercises) to address individual learning needs. However, manual construction and delivery of such activities is a laborious process. Thus, in this paper, we study a novel task of adaptive and personalized exercise generation for online language learning. To this end, we combine a knowledge tracing model that estimates each student's evolving knowledge states from their learning history and a controlled text generation model that generates exercise sentences based on the student's current estimated knowledge state and instructor requirements of desired properties (e.g., domain knowledge and difficulty). We train and evaluate our model on real-world learner interaction data from Duolingo and demonstrate that LMs guided by student states can generate superior exercises. Then, we discuss the potential use of our model in educational applications using various simulations. These simulations show that our model can adapt to students' individual abilities and can facilitate their learning efficiency by personalizing learning sequences.

Quantum algorithms for optimization problems are of general interest. Despite recent progress in classical lower bounds for nonconvex optimization under different settings and quantum lower bounds for convex optimization, quantum lower bounds for nonconvex optimization are still widely open. In this paper, we conduct a systematic study of quantum query lower bounds on finding $\epsilon$-approximate stationary points of nonconvex functions, and we consider the following two important settings: 1) having access to $p$-th order derivatives; or 2) having access to stochastic gradients. The classical query lower bounds is $\Omega\big(\epsilon^{-\frac{1+p}{p}}\big)$ regarding the first setting, and $\Omega(\epsilon^{-4})$ regarding the second setting (or $\Omega(\epsilon^{-3})$ if the stochastic gradient function is mean-squared smooth). In this paper, we extend all these classical lower bounds to the quantum setting. They match the classical algorithmic results respectively, demonstrating that there is no quantum speedup for finding $\epsilon$-stationary points of nonconvex functions with $p$-th order derivative inputs or stochastic gradient inputs, whether with or without the mean-squared smoothness assumption. Technically, our quantum lower bounds are obtained by showing that the sequential nature of classical hard instances in all these settings also applies to quantum queries, preventing any quantum speedup other than revealing information of the stationary points sequentially.

A dictionary data structure maintains a set of at most $n$ keys from the universe $[U]$ under key insertions and deletions, such that given a query $x \in [U]$, it returns if $x$ is in the set. Some variants also store values associated to the keys such that given a query $x$, the value associated to $x$ is returned when $x$ is in the set. This fundamental data structure problem has been studied for six decades since the introduction of hash tables in 1953. A hash table occupies $O(n\log U)$ bits of space with constant time per operation in expectation. There has been a vast literature on improving its time and space usage. The state-of-the-art dictionary by Bender, Farach-Colton, Kuszmaul, Kuszmaul and Liu [BFCK+22] has space consumption close to the information-theoretic optimum, using a total of \[ \log\binom{U}{n}+O(n\log^{(k)} n) \] bits, while supporting all operations in $O(k)$ time, for any parameter $k \leq \log^* n$. The term $O(\log^{(k)} n) = O(\underbrace{\log\cdots\log}_k n)$ is referred to as the wasted bits per key. In this paper, we prove a matching cell-probe lower bound: For $U=n^{1+\Theta(1)}$, any dictionary with $O(\log^{(k)} n)$ wasted bits per key must have expected operational time $\Omega(k)$, in the cell-probe model with word-size $w=\Theta(\log U)$. Furthermore, if a dictionary stores values of $\Theta(\log U)$ bits, we show that regardless of the query time, it must have $\Omega(k)$ expected update time. It is worth noting that this is the first cell-probe lower bound on the trade-off between space and update time for general data structures.

We study the problem of learning causal representations from unknown, latent interventions in a general setting, where the latent distribution is Gaussian but the mixing function is completely general. We prove strong identifiability results given unknown single-node interventions, i.e., without having access to the intervention targets. This generalizes prior works which have focused on weaker classes, such as linear maps or paired counterfactual data. This is also the first instance of causal identifiability from non-paired interventions for deep neural network embeddings. Our proof relies on carefully uncovering the high-dimensional geometric structure present in the data distribution after a non-linear density transformation, which we capture by analyzing quadratic forms of precision matrices of the latent distributions. Finally, we propose a contrastive algorithm to identify the latent variables in practice and evaluate its performance on various tasks.

We introduce a gradient-based approach for the problem of Bayesian optimal experimental design to learn causal models in a batch setting -- a critical component for causal discovery from finite data where interventions can be costly or risky. Existing methods rely on greedy approximations to construct a batch of experiments while using black-box methods to optimize over a single target-state pair to intervene with. In this work, we completely dispose of the black-box optimization techniques and greedy heuristics and instead propose a conceptually simple end-to-end gradient-based optimization procedure to acquire a set of optimal intervention target-state pairs. Such a procedure enables parameterization of the design space to efficiently optimize over a batch of multi-target-state interventions, a setting which has hitherto not been explored due to its complexity. We demonstrate that our proposed method outperforms baselines and existing acquisition strategies in both single-target and multi-target settings across a number of synthetic datasets.

While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on several popular benchmarks including CUB-200-2011, MIT Indoor-67, MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at //github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.

Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.

北京阿比特科技有限公司