In this paper, we first indicate that the block error event of polar codes under successive cancellation list (SCL) decoding is composed of path loss (PL) error event and path selection (PS) error event, where the PL error event is that correct codeword is lost during the SCL decoding and the PS error event is that correct codeword is reserved in the decoded list but not selected as the decoded codeword. Then, we simplify the PL error event by assuming the all-zero codeword is transmitted and derive the probability lower bound via the joint probability density of the log-likelihood ratios of information bits. Meanwhile, the union bound calculated by the minimum weight distribution is used to evaluate the probability of the PS error event. With the performance analysis, we design a greedy bit-swapping (BS) algorithm to construct polar codes by gradually swapping information bit and frozen bit to reduce the performance lower bound of SCL decoding. The simulation results show that the BLER performance of SCL decoding is close to the lower bound in the medium to high signal-to-noise ratio region and we can optimize the lower bound to improve the BLER performance of SCL decoding by the BS algorithm.
In this paper, we consider sampling an Ornstein-Uhlenbeck (OU) process through a channel for remote estimation. The goal is to minimize the mean square error (MSE) at the estimator under a sampling frequency constraint when the channel delay statistics is unknown. Sampling for MSE minimization is reformulated into an optimal stopping problem. By revisiting the threshold structure of the optimal stopping policy when the delay statistics is known, we propose an online sampling algorithm to learn the optimum threshold using stochastic approximation algorithm and the virtual queue method. We prove that with probability 1, the MSE of the proposed online algorithm converges to the minimum MSE that is achieved when the channel delay statistics is known. The cumulative MSE gap of our proposed algorithm compared with the minimum MSE up to the $(k+1)$-th sample grows with rate at most $\mathcal{O}(\ln k)$. Our proposed online algorithm can satisfy the sampling frequency constraint theoretically. Finally, simulation results are provided to demonstrate the performance of the proposed algorithm.
In this paper, we investigate the stochastic contextual bandit with general function space and graph feedback. We propose an algorithm that addresses this problem by adapting to both the underlying graph structures and reward gaps. To the best of our knowledge, our algorithm is the first to provide a gap-dependent upper bound in this stochastic setting, bridging the research gap left by the work in [35]. In comparison to [31,33,35], our method offers improved regret upper bounds and does not require knowledge of graphical quantities. We conduct numerical experiments to demonstrate the computational efficiency and effectiveness of our approach in terms of regret upper bounds. These findings highlight the significance of our algorithm in advancing the field of stochastic contextual bandits with graph feedback, opening up avenues for practical applications in various domains.
In this paper, we consider a heterogeneous repository of drone-enabled aerial base stations with varying transmit powers that provide downlink wireless coverage for ground users. One particular challenge is optimal selection and deployment of a subset of available drone base stations (DBSs) to satisfy the downlink data rate requirements while minimizing the overall power consumption. In order to address this challenge, we formulate an optimization problem to select the best subset of available DBSs so as to guarantee wireless coverage with some acceptable transmission rate in the downlink path. In addition to the selection of DBSs, we determine their 3D position so as to minimize their overall power consumption. Moreover, assuming that the DBSs operate in the same frequency band, we develop a novel and computationally efficient beamforming method to alleviate the inter-cell interference impact on the downlink. We propose a Kalai-Smorodinsky bargaining solution to determine the optimal beamforming strategy in the downlink path to compensate for the impairment caused by the interference. Simulation results demonstrate the effectiveness of the proposed solution and provide valuable insights into the performance of the heterogeneous drone-based small cell networks.
In this paper, we investigate the impact of imbalanced data on the convergence of distributed dual coordinate ascent in a tree network for solving an empirical loss minimization problem in distributed machine learning. To address this issue, we propose a method called delayed generalized distributed dual coordinate ascent that takes into account the information of the imbalanced data, and provide the analysis of the proposed algorithm. Numerical experiments confirm the effectiveness of our proposed method in improving the convergence speed of distributed dual coordinate ascent in a tree network.
In the conventional successive cancellation (SC) decoder for polar codes, all the future bits to be estimated later are treated as random variables. However, polar codes inevitably involve frozen bits, and their concatenated coding schemes also include parity bits (or dynamic frozen bits) causally generated from the past bits estimated earlier. We refer to the frozen and parity bits located behind a target decoding bit as its future constraints (FCs). Although the values of FCs are deterministic given the past estimates, they have not been exploited in the conventional SC-based decoders, not leading to optimality. In this paper, we propose SC-check (SCC) and belief propagation SCC (BP-SCC) decoding algorithms in order to leverage FCs in decoding. We further devise an improved tree search technique based on stack-based backjumping (SBJ) to solve dynamic constraint satisfaction problems (CSPs) formulated by FCs. Over the binary erasure channel (BEC), numerical results show that a combination of the BP-SCC algorithm and the SBJ tree search technique achieves the erasure recovery performance close to the dependence testing (DT) bound, a bound of achievable finite-length performance.
In this paper, we study the application of DRL algorithms in the context of local navigation problems, in which a robot moves towards a goal location in unknown and cluttered workspaces equipped only with limited-range exteroceptive sensors, such as LiDAR. Collision avoidance policies based on DRL present some advantages, but they are quite susceptible to local minima, once their capacity to learn suitable actions is limited to the sensor range. Since most robots perform tasks in unstructured environments, it is of great interest to seek generalized local navigation policies capable of avoiding local minima, especially in untrained scenarios. To do so, we propose a novel reward function that incorporates map information gained in the training stage, increasing the agent's capacity to deliberate about the best course of action. Also, we use the SAC algorithm for training our ANN, which shows to be more effective than others in the state-of-the-art literature. A set of sim-to-sim and sim-to-real experiments illustrate that our proposed reward combined with the SAC outperforms the compared methods in terms of local minima and collision avoidance.
In this paper we consider the problem of recovering a low-rank Tucker approximation to a massive tensor based solely on structured random compressive measurements. Crucially, the proposed random measurement ensembles are both designed to be compactly represented (i.e., low-memory), and can also be efficiently computed in one-pass over the tensor. Thus, the proposed compressive sensing approach may be used to produce a low-rank factorization of a huge tensor that is too large to store in memory with a total memory footprint on the order of the much smaller desired low-rank factorization. In addition, the compressive sensing recovery algorithm itself (which takes the compressive measurements as input, and then outputs a low-rank factorization) also runs in a time which principally depends only on the size of the sought factorization, making its runtime sub-linear in the size of the large tensor one is approximating. Finally, unlike prior works related to (streaming) algorithms for low-rank tensor approximation from such compressive measurements, we present a unified analysis of both Kronecker and Khatri-Rao structured measurement ensembles culminating in error guarantees comparing the error of our recovery algorithm's approximation of the input tensor to the best possible low-rank Tucker approximation error achievable for the tensor by any possible algorithm. We further include an empirical study of the proposed approach that verifies our theoretical findings and explores various trade-offs of parameters of interest.
In this paper, we investigate the operation of an aerial manipulator system, namely an Unmanned Aerial Vehicle (UAV) equipped with a controllable arm with two degrees of freedom to carry out actuation tasks on the fly. Our solution is based on employing a Q-learning method to control the trajectory of the tip of the arm, also called end-effector. More specifically, we develop a motion planning model based on Time To Collision (TTC), which enables a quadrotor UAV to navigate around obstacles while ensuring the manipulator's reachability. Additionally, we utilize a model-based Q-learning model to independently track and control the desired trajectory of the manipulator's end-effector, given an arbitrary baseline trajectory for the UAV platform. Such a combination enables a variety of actuation tasks such as high-altitude welding, structural monitoring and repair, battery replacement, gutter cleaning, skyscrapper cleaning, and power line maintenance in hard-to-reach and risky environments while retaining compatibility with flight control firmware. Our RL-based control mechanism results in a robust control strategy that can handle uncertainties in the motion of the UAV, offering promising performance. Specifically, our method achieves 92% accuracy in terms of average displacement error (i.e. the mean distance between the target and obtained trajectory points) using Q-learning with 15,000 episodes
In this paper, we tackle two challenges in multimodal learning for visual recognition: 1) when missing-modality occurs either during training or testing in real-world situations; and 2) when the computation resources are not available to finetune on heavy transformer models. To this end, we propose to utilize prompt learning and mitigate the above two challenges together. Specifically, our modality-missing-aware prompts can be plugged into multimodal transformers to handle general missing-modality cases, while only requiring less than 1% learnable parameters compared to training the entire model. We further explore the effect of different prompt configurations and analyze the robustness to missing modality. Extensive experiments are conducted to show the effectiveness of our prompt learning framework that improves the performance under various missing-modality cases, while alleviating the requirement of heavy model re-training. Code is available.
To quickly obtain new labeled data, we can choose crowdsourcing as an alternative way at lower cost in a short time. But as an exchange, crowd annotations from non-experts may be of lower quality than those from experts. In this paper, we propose an approach to performing crowd annotation learning for Chinese Named Entity Recognition (NER) to make full use of the noisy sequence labels from multiple annotators. Inspired by adversarial learning, our approach uses a common Bi-LSTM and a private Bi-LSTM for representing annotator-generic and -specific information. The annotator-generic information is the common knowledge for entities easily mastered by the crowd. Finally, we build our Chinese NE tagger based on the LSTM-CRF model. In our experiments, we create two data sets for Chinese NER tasks from two domains. The experimental results show that our system achieves better scores than strong baseline systems.