亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Variational regularization is a classical technique to solve statistical inference tasks and inverse problems, with modern data-driven approaches parameterizing regularizers via deep neural networks showcasing impressive empirical performance. Recent works along these lines learn task-dependent regularizers. This is done by integrating information about the measurements and ground-truth data in an unsupervised, critic-based loss function, where the regularizer attributes low values to likely data and high values to unlikely data. However, there is little theory about the structure of regularizers learned via this process and how it relates to the two data distributions. To make progress on this challenge, we initiate a study of optimizing critic-based loss functions to learn regularizers over a particular family of regularizers: gauges (or Minkowski functionals) of star-shaped bodies. This family contains regularizers that are commonly employed in practice and shares properties with regularizers parameterized by deep neural networks. We specifically investigate critic-based losses derived from variational representations of statistical distances between probability measures. By leveraging tools from star geometry and dual Brunn-Minkowski theory, we illustrate how these losses can be interpreted as dual mixed volumes that depend on the data distribution. This allows us to derive exact expressions for the optimal regularizer in certain cases. Finally, we identify which neural network architectures give rise to such star body gauges and when do such regularizers have favorable properties for optimization. More broadly, this work highlights how the tools of star geometry can aid in understanding the geometry of unsupervised regularizer learning.

相關內容

Unlabeled sensing is the problem of solving a linear system of equations, where the right-hand-side vector is known only up to a permutation. In this work, we study fields of rational functions related to symmetric polynomials and their images under a linear projection of the variables; as a consequence, we establish that the solution to an n-dimensional unlabeled sensing problem with generic data can be obtained as the unique solution to a system of n + 1 polynomial equations of degrees 1, 2, . . . , n + 1 in n unknowns. Besides the new theoretical insights, this development offers the potential for scaling up algebraic unlabeled sensing algorithms.

Validity, reliability, and fairness are core ethical principles embedded in classical argument-based assessment validation theory. These principles are also central to the Standards for Educational and Psychological Testing (2014) which recommended best practices for early applications of artificial intelligence (AI) in high-stakes assessments for automated scoring of written and spoken responses. Responsible AI (RAI) principles and practices set forth by the AI ethics community are critical to ensure the ethical use of AI across various industry domains. Advances in generative AI have led to new policies as well as guidance about the implementation of RAI principles for assessments using AI. Building on Chapelle's foundational validity argument work to address the application of assessment validation theory for technology-based assessment, we propose a unified assessment framework that considers classical test validation theory and assessment-specific and domain-agnostic RAI principles and practice. The framework addresses responsible AI use for assessment that supports validity arguments, alignment with AI ethics to maintain human values and oversight, and broader social responsibility associated with AI use.

We construct a polynomial-time classical algorithm that samples from the output distribution of low-depth noisy Clifford circuits with any product-state inputs and final single-qubit measurements in any basis. This class of circuits includes Clifford-magic circuits and Conjugated-Clifford circuits, which are important candidates for demonstrating quantum advantage using non-universal gates. Additionally, our results generalize a simulation algorithm for IQP circuits [Rajakumar et. al, SODA'25] to the case of IQP circuits augmented with CNOT gates, which is another class of non-universal circuits that are relevant to current experiments. Importantly, our results do not require randomness assumptions over the circuit families considered (such as anticoncentration properties) and instead hold for \textit{every} circuit in each class. This allows us to place tight limitations on the robustness of these circuits to noise. In particular, we show that there is no quantum advantage at large depths with realistically noisy Clifford circuits, even with perfect magic state inputs, or IQP circuits with CNOT gates, even with arbitrary diagonal non-Clifford gates. The key insight behind the algorithm is that interspersed noise causes a decay of long-range entanglement, and at depths beyond a critical threshold, the noise builds up to an extent that most correlations can be classically simulated. To prove our results, we merge techniques from percolation theory with tools from Pauli path analysis.

General state-space models (SSMs) are widely used in statistical machine learning and are among the most classical generative models for sequential time-series data. SSMs, comprising latent Markovian states, can be subjected to variational inference (VI), but standard VI methods like the importance-weighted autoencoder (IWAE) lack functionality for streaming data. To enable online VI in SSMs when the observations are received in real time, we propose maximising an IWAE-type variational lower bound on the asymptotic contrast function, rather than the standard IWAE ELBO, using stochastic approximation. Unlike the recursive maximum likelihood method, which directly maximises the asymptotic contrast, our approach, called online sequential IWAE (OSIWAE), allows for online learning of both model parameters and a Markovian recognition model for inferring latent states. By approximating filter state posteriors and their derivatives using sequential Monte Carlo (SMC) methods, we create a particle-based framework for online VI in SSMs. This approach is more theoretically well-founded than recently proposed online variational SMC methods. We provide rigorous theoretical results on the learning objective and a numerical study demonstrating the method's efficiency in learning model parameters and particle proposal kernels.

In statistics on manifolds, the notion of the mean of a probability distribution becomes more involved than in a linear space. Several location statistics have been proposed, which reduce to the ordinary mean in Euclidean space. A relatively new family of contenders in this field are Diffusion Means, which are a one parameter family of location statistics modeled as initial points of isotropic diffusion with the diffusion time as parameter. It is natural to consider limit cases of the diffusion time parameter and it turns out that for short times the diffusion mean set approaches the intrinsic mean set. For long diffusion times, the limit is less obvious but for spheres of arbitrary dimension the diffusion mean set has been shown to converge to the extrinsic mean set. Here, we extend this result to the real projective spaces in their unique smooth isometric embedding into a linear space. We conjecture that the long time limit is always given by the extrinsic mean in the isometric embedding for connected compact symmetric spaces with unique isometric embedding.

We provide a convergence analysis of gradient descent for the problem of agnostically learning a single ReLU function with moderate bias under Gaussian distributions. Unlike prior work that studies the setting of zero bias, we consider the more challenging scenario when the bias of the ReLU function is non-zero. Our main result establishes that starting from random initialization, in a polynomial number of iterations gradient descent outputs, with high probability, a ReLU function that achieves an error that is within a constant factor of the optimal error of the best ReLU function with moderate bias. We also provide finite sample guarantees, and these techniques generalize to a broader class of marginal distributions beyond Gaussians.

Bayesian hierarchical models are commonly employed for inference in count datasets, as they account for multiple levels of variation by incorporating prior distributions for parameters at different levels. Examples include Beta-Binomial, Negative-Binomial (NB), Dirichlet-Multinomial (DM) distributions. In this paper, we address two crucial challenges that arise in various Bayesian count models: inference for the concentration parameter in the ratio of Gamma functions and the inability of these models to effectively handle excessive zeros and small nonzero counts. We propose a novel class of prior distributions that facilitates conjugate updating of the concentration parameter in Gamma ratios, enabling full Bayesian inference for the aforementioned count distributions. We use DM models as our running examples. Our methodology leverages fast residue computation and admits closed-form posterior moments. Additionally, we recommend a default horseshoe type prior which has a heavy tail and substantial mass around zero. It admits continuous shrinkage, making the posterior highly adaptable to sparsity or quasi-sparsity in the data. Furthermore, we offer insights and potential generalizations to other count models facing the two challenges. We demonstrate the usefulness of our approach on both simulated examples and on real-world applications. Finally, we conclude with directions for future research.

We describe a mesh-free three-dimensional (3D) numerical scheme for solving the incompressible semi-geostrophic equations, based on semi-discrete optimal transport techniques. These results generalise previous two-dimensional (2D) implementations. The optimal transport methods we adopt are known for their structural preservation and energy conservation qualities and achieve an excellent level of efficiency and numerical energy-conservation. We use this scheme to generate numerical simulations of an important benchmark problem. To our knowledge, this is the first fully 3D simulation of this particular cyclone, evidencing the model's applicability to atmospheric and oceanic phenomena and offering a novel, robust tool for meteorological and oceanographic modelling.

Structured state-space models (SSMs) such as S4, stemming from the seminal work of Gu et al., are gaining popularity as effective approaches for modeling sequential data. Deep SSMs demonstrate outstanding performance across a diverse set of domains, at a reduced training and inference cost compared to attention-based transformers. Recent developments show that if the linear recurrence powering SSMs allows for multiplicative interactions between inputs and hidden states (e.g. GateLoop, Mamba, GLA), then the resulting architecture can surpass in both in accuracy and efficiency attention-powered foundation models trained on text, at scales of billion parameters. In this paper, we give theoretical grounding to this recent finding using tools from Rough Path Theory: we show that when random linear recurrences are equipped with simple input-controlled transitions (selectivity mechanism), then the hidden state is provably a low-dimensional projection of a powerful mathematical object called the signature of the input -- capturing non-linear interactions between tokens at distinct timescales. Our theory not only motivates the success of modern selective state-space models such as Mamba but also provides a solid framework to understand the expressive power of future SSM variants.

This work uniquely identifies and characterizes four prevalent multimodal model architectural patterns in the contemporary multimodal landscape. Systematically categorizing models by architecture type facilitates monitoring of developments in the multimodal domain. Distinct from recent survey papers that present general information on multimodal architectures, this research conducts a comprehensive exploration of architectural details and identifies four specific architectural types. The types are distinguished by their respective methodologies for integrating multimodal inputs into the deep neural network model. The first two types (Type A and B) deeply fuses multimodal inputs within the internal layers of the model, whereas the following two types (Type C and D) facilitate early fusion at the input stage. Type-A employs standard cross-attention, whereas Type-B utilizes custom-designed layers for modality fusion within the internal layers. On the other hand, Type-C utilizes modality-specific encoders, while Type-D leverages tokenizers to process the modalities at the model's input stage. The identified architecture types aid the monitoring of any-to-any multimodal model development. Notably, Type-C and Type-D are currently favored in the construction of any-to-any multimodal models. Type-C, distinguished by its non-tokenizing multimodal model architecture, is emerging as a viable alternative to Type-D, which utilizes input-tokenizing techniques. To assist in model selection, this work highlights the advantages and disadvantages of each architecture type based on data and compute requirements, architecture complexity, scalability, simplification of adding modalities, training objectives, and any-to-any multimodal generation capability.

北京阿比特科技有限公司