亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Irreversible drift-diffusion processes are very common in biochemical reactions. They have a non-equilibrium stationary state (invariant measure) which does not satisfy detailed balance. For the corresponding Fokker-Planck equation on a closed manifold, using Voronoi tessellation, we propose two upwind finite volume schemes with or without the information of the invariant measure. Both schemes possess stochastic $Q$-matrix structures and can be decomposed as a gradient flow part and a Hamiltonian flow part, enabling us to prove unconditional stability, ergodicity and error estimates. Based on the two upwind schemes, several numerical examples - including sampling accelerated by a mixture flow, image transformations and simulations for stochastic model of chaotic system - are conducted. These two structure-preserving schemes also give a natural random walk approximation for a generic irreversible drift-diffusion process on a manifold. This makes them suitable for adapting to manifold-related computations that arise from high-dimensional molecular dynamics simulations.

相關內容

This paper investigates the asymptotic distribution of the maximum-likelihood estimate (MLE) in multinomial logistic models in the high-dimensional regime where dimension and sample size are of the same order. While classical large-sample theory provides asymptotic normality of the MLE under certain conditions, such classical results are expected to fail in high-dimensions as documented for the binary logistic case in the seminal work of Sur and Cand\`es [2019]. We address this issue in classification problems with 3 or more classes, by developing asymptotic normality and asymptotic chi-square results for the multinomial logistic MLE (also known as cross-entropy minimizer) on null covariates. Our theory leads to a new methodology to test the significance of a given feature. Extensive simulation studies on synthetic data corroborate these asymptotic results and confirm the validity of proposed p-values for testing the significance of a given feature.

In recent years a new class of symmetric-key primitives over $\mathbb{F}_p$ that are essential to Multi-Party Computation and Zero-Knowledge Proofs based protocols have emerged. Towards improving the efficiency of such primitives, a number of new block ciphers and hash functions over $\mathbb{F}_p$ were proposed. These new primitives also showed that following alternative design strategies to the classical Substitution-Permutation Network (SPN) and Feistel Networks leads to more efficient cipher and hash function designs over $\mathbb{F}_p$ specifically for large odd primes $p$. In view of these efforts, in this work we build an \emph{algebraic framework} that allows the systematic exploration of viable and efficient design strategies for constructing symmetric-key (iterative) permutations over $\mathbb{F}_p$. We first identify iterative polynomial dynamical systems over finite fields as the central building block of almost all block cipher design strategies. We propose a generalized triangular polynomial dynamical system (GTDS), and based on the GTDS we provide a generic definition of an iterative (keyed) permutation over $\mathbb{F}_p^n$. Our GTDS-based generic definition is able to describe the three most well-known design strategies, namely SPNs, Feistel networks and Lai--Massey. Consequently, the block ciphers that are constructed following these design strategies can also be instantiated from our generic definition. Moreover, we find that the recently proposed \texttt{Griffin} design, which neither follows the Feistel nor the SPN design, can be described using the generic GTDS-based definition. We also show that a new generalized Lai--Massey construction can be instantiated from the GTDS-based definition. We further provide generic analysis of the GTDS including an upper bound on the differential uniformity and the correlation.

Missing data frequently occurs in datasets across various domains, such as medicine, sports, and finance. In many cases, to enable proper and reliable analyses of such data, the missing values are often imputed, and it is necessary that the method used has a low root mean square error (RMSE) between the imputed and the true values. In addition, for some critical applications, it is also often a requirement that the imputation method is scalable and the logic behind the imputation is explainable, which is especially difficult for complex methods that are, for example, based on deep learning. Based on these considerations, we propose a new algorithm named "conditional Distribution-based Imputation of Missing Values with Regularization" (DIMV). DIMV operates by determining the conditional distribution of a feature that has missing entries, using the information from the fully observed features as a basis. As will be illustrated via experiments in the paper, DIMV (i) gives a low RMSE for the imputed values compared to state-of-the-art methods; (ii) fast and scalable; (iii) is explainable as coefficients in a regression model, allowing reliable and trustable analysis, makes it a suitable choice for critical domains where understanding is important such as in medical fields, finance, etc; (iv) can provide an approximated confidence region for the missing values in a given sample; (v) suitable for both small and large scale data; (vi) in many scenarios, does not require a huge number of parameters as deep learning approaches; (vii) handle multicollinearity in imputation effectively; and (viii) is robust to the normally distributed assumption that its theoretical grounds rely on.

Modern mainstream financial theory is underpinned by the efficient market hypothesis, which posits the rapid incorporation of relevant information into asset pricing. Limited prior studies in the operational research literature have investigated the use of tests designed for random number generators to check for these informational efficiencies. Treating binary daily returns as a hardware random number generator analogue, tests of overlapping permutations have indicated that these time series feature idiosyncratic recurrent patterns. Contrary to prior studies, we split our analysis into two streams at the annual and company level, and investigate longer-term efficiency over a larger time frame for Nasdaq-listed public companies to diminish the effects of trading noise and allow the market to realistically digest new information. Our results demonstrate that information efficiency varies across different years and reflects large-scale market impacts such as financial crises. We also show the proximity to results of a logistic map comparison, discuss the distinction between theoretical and practical market efficiency, and find that the statistical qualification of stock-separated returns in support of the efficient market hypothesis is dependent on the driving factor of small inefficient subsets that skew market assessments.

In this paper, we address the trajectory planning problem in uncertain nonconvex static and dynamic environments that contain obstacles with probabilistic location, size, and geometry. To address this problem, we provide a risk bounded trajectory planning method that looks for continuous-time trajectories with guaranteed bounded risk over the planning time horizon. Risk is defined as the probability of collision with uncertain obstacles. Existing approaches to address risk bounded trajectory planning problems either are limited to Gaussian uncertainties and convex obstacles or rely on sampling-based methods that need uncertainty samples and time discretization. To address the risk bounded trajectory planning problem, we leverage the notion of risk contours to transform the risk bounded planning problem into a deterministic optimization problem. Risk contours are the set of all points in the uncertain environment with guaranteed bounded risk. The obtained deterministic optimization is, in general, nonlinear and nonconvex time-varying optimization. We provide convex methods based on sum-of-squares optimization to efficiently solve the obtained nonconvex time-varying optimization problem and obtain the continuous-time risk bounded trajectories without time discretization. The provided approach deals with arbitrary (and known) probabilistic uncertainties, nonconvex and nonlinear, static and dynamic obstacles, and is suitable for online trajectory planning problems. In addition, we provide convex methods based on sum-of-squares optimization to build the max-sized tube with respect to its parameterization along the trajectory so that any state inside the tube is guaranteed to have bounded risk.

Minimum variance controllers have been employed in a wide-range of industrial applications. A key challenge experienced by many adaptive controllers is their poor empirical performance in the initial stages of learning. In this paper, we address the problem of initializing them so that they provide acceptable transients, and also provide an accompanying finite-time regret analysis, for adaptive minimum variance control of an auto-regressive system with exogenous inputs (ARX). Following [3], we consider a modified version of the Certainty Equivalence (CE) adaptive controller, which we call PIECE, that utilizes probing inputs for exploration. We show that it has a $C \log T$ bound on the regret after $T$ time-steps for bounded noise, and $C\log^2 T$ in the case of sub-Gaussian noise. The simulation results demonstrate the advantage of PIECE over the algorithm proposed in [3] as well as the standard Certainty Equivalence controller especially in the initial learning phase. To the best of our knowledge, this is the first work that provides finite-time regret bounds for an adaptive minimum variance controller.

Recently, diffusion probabilistic models (DPMs) have achieved promising results in diverse generative tasks. A typical DPM framework includes a forward process that gradually diffuses the data distribution and a reverse process that recovers the data distribution from time-dependent data scores. In this work, we observe that the stochastic reverse process of data scores is a martingale, from which concentration bounds and the optional stopping theorem for data scores can be derived. Then, we discover a simple way for calibrating an arbitrary pretrained DPM, with which the score matching loss can be reduced and the lower bounds of model likelihood can consequently be increased. We provide general calibration guidelines under various model parametrizations. Our calibration method is performed only once and the resulting models can be used repeatedly for sampling. We conduct experiments on multiple datasets to empirically validate our proposal. Our code is at //github.com/thudzj/Calibrated-DPMs.

We present Lilac, a separation logic for reasoning about probabilistic programs where separating conjunction captures probabilistic independence. Inspired by an analogy with mutable state where sampling corresponds to dynamic allocation, we show how probability spaces over a fixed, ambient sample space appear to be the natural analogue of heap fragments, and present a new combining operation on them such that probability spaces behave like heaps and measurability of random variables behaves like ownership. This combining operation forms the basis for our model of separation, and produces a logic with many pleasant properties. In particular, Lilac has a frame rule identical to the ordinary one, and naturally accommodates advanced features like continuous random variables and reasoning about quantitative properties of programs. Then we propose a new modality based on disintegration theory for reasoning about conditional probability. We show how the resulting modal logic validates examples from prior work, and give a formal verification of an intricate weighted sampling algorithm whose correctness depends crucially on conditional independence structure.

This paper considers a stochastic control framework, in which the residual model uncertainty of the dynamical system is learned using a Gaussian Process (GP). In the proposed formulation, the residual model uncertainty consists of a nonlinear function and state-dependent noise. The proposed formulation uses a posterior-GP to approximate the residual model uncertainty and a prior-GP to account for state-dependent noise. The two GPs are interdependent and are thus learned jointly using an iterative algorithm. Theoretical properties of the iterative algorithm are established. Advantages of the proposed state-dependent formulation include (i) faster convergence of the GP estimate to the unknown function as the GP learns which data samples are more trustworthy and (ii) an accurate estimate of state-dependent noise, which can, e.g., be useful for a controller or decision-maker to determine the uncertainty of an action. Simulation studies highlight these two advantages.

In practical compressed sensing (CS), the obtained measurements typically necessitate quantization to a limited number of bits prior to transmission or storage. This nonlinear quantization process poses significant recovery challenges, particularly with extreme coarse quantization such as 1-bit. Recently, an efficient algorithm called QCS-SGM was proposed for quantized CS (QCS) which utilizes score-based generative models (SGM) as an implicit prior. Due to the adeptness of SGM in capturing the intricate structures of natural signals, QCS-SGM substantially outperforms previous QCS methods. However, QCS-SGM is constrained to (approximately) row-orthogonal sensing matrices as the computation of the likelihood score becomes intractable otherwise. To address this limitation, we introduce an advanced variant of QCS-SGM, termed QCS-SGM+, capable of handling general matrices effectively. The key idea is a Bayesian inference perspective on the likelihood score computation, wherein an expectation propagation algorithm is employed for its approximate computation. We conduct extensive experiments on various settings, demonstrating the substantial superiority of QCS-SGM+ over QCS-SGM for general sensing matrices beyond mere row-orthogonality.

北京阿比特科技有限公司