亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Workshop courses designed to foster creativity are gaining popularity. However, even experienced faculty teams find it challenging to realize a holistic evaluation that accommodates diverse perspectives. Adequate deliberation is essential to integrate varied assessments, but faculty often lack the time for such exchanges. Deriving an average score without discussion undermines the purpose of a holistic evaluation. Therefore, this paper explores the use of a Large Language Model (LLM) as a facilitator to integrate diverse faculty assessments. Scenario-based experiments were conducted to determine if the LLM could integrate diverse evaluations and explain the underlying pedagogical theories to faculty. The results were noteworthy, showing that the LLM can effectively facilitate faculty discussions. Additionally, the LLM demonstrated the capability to create evaluation criteria by generalizing a single scenario-based experiment, leveraging its already acquired pedagogical domain knowledge.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集(ji)成,VLSI雜志。 Publisher:Elsevier。 SIT:

In this work, we tackle the task of learning 3D human Gaussians from a single image, focusing on recovering detailed appearance and geometry including unobserved regions. We introduce a single-view generalizable Human Gaussian Model (HGM), which employs a novel generate-then-refine pipeline with the guidance from human body prior and diffusion prior. Our approach uses a ControlNet to refine rendered back-view images from coarse predicted human Gaussians, then uses the refined image along with the input image to reconstruct refined human Gaussians. To mitigate the potential generation of unrealistic human poses and shapes, we incorporate human priors from the SMPL-X model as a dual branch, propagating image features from the SMPL-X volume to the image Gaussians using sparse convolution and attention mechanisms. Given that the initial SMPL-X estimation might be inaccurate, we gradually refine it with our HGM model. We validate our approach on several publicly available datasets. Our method surpasses previous methods in both novel view synthesis and surface reconstruction. Our approach also exhibits strong generalization for cross-dataset evaluation and in-the-wild images.

Dexterous hands exhibit significant potential for complex real-world grasping tasks. While recent studies have primarily focused on learning policies for specific robotic hands, the development of a universal policy that controls diverse dexterous hands remains largely unexplored. In this work, we study the learning of cross-embodiment dexterous grasping policies using reinforcement learning (RL). Inspired by the capability of human hands to control various dexterous hands through teleoperation, we propose a universal action space based on the human hand's eigengrasps. The policy outputs eigengrasp actions that are then converted into specific joint actions for each robot hand through a retargeting mapping. We simplify the robot hand's proprioception to include only the positions of fingertips and the palm, offering a unified observation space across different robot hands. Our approach demonstrates an 80% success rate in grasping objects from the YCB dataset across four distinct embodiments using a single vision-based policy. Additionally, our policy exhibits zero-shot generalization to two previously unseen embodiments and significant improvement in efficient finetuning. For further details and videos, visit our project page //sites.google.com/view/crossdex.

Recent advancements in Large Language Models (LLMs) have achieved robust performance across diverse tasks, but fine-tuning these models for specific domains remains resource-intensive. Parameter-Efficient Fine-Tuning (PEFT) methods like Low-Rank Adaptation (LoRA) address this challenge by fine-tuning a small subset of parameters. However, existing methods for fusing multiple LoRAs lack dynamic fusion based on contextual inputs and often increase inference time due to token-level operations. We propose DLP-LoRA, a Dynamic Lightweight Plugin that employs a mini-MLP module with only 5M parameters to dynamically fuse multiple LoRAs at the sentence level using top-p sampling strategies. This approach reduces inference time to less than twice that of single LoRA inference by leveraging parallel computation. Evaluations across 26 tasks-including multiple-choice questions and question answering-demonstrate that DLP-LoRA achieves an average accuracy of 92.34% on multiple-choice datasets and significant improvements in BLEU and ROUGE scores on QA datasets, outperforming different LLMs backbones under composite task settings. DLP-LoRA effectively balances performance and efficiency, making it a practical solution for dynamic multi-task adaptation in LLMs. Our code is available at //github.com/MeCuping/DLP-LoRA.

Generative artificial intelligence poses new challenges around assessment and academic integrity, increasingly driving introductory programming educators to employ invigilated exams often conducted in-person on pencil-and-paper. But the structure of exams often fails to accommodate authentic programming experiences that involve planning, implementing, and debugging programs with computer interaction. In this experience report, we describe code interviews: a more authentic assessment method for take-home programming assignments. Through action research, we experimented with varying the number and type of questions as well as whether interviews were conducted individually or with groups of students. To scale the program, we converted most of our weekly teaching assistant (TA) sections to conduct code interviews on 5 major weekly take-home programming assignments. By triangulating data from 5 sources, we identified 4 themes. Code interviews (1) pushed students to discuss their work, motivating more nuanced but sometimes repetitive insights; (2) enabled peer learning, reducing stress in some ways but increasing stress in other ways; (3) scaled with TA-led sections, replacing familiar practice with an unfamiliar assessment; (4) focused on student contributions, limiting opportunities for TAs to give guidance and feedback. We conclude by discussing the different decisions about the design of code interviews with implications for student experience, academic integrity, and teaching workload.

In the current NISQ-era, one of the major challenges faced by researchers and practitioners lies in figuring out how to combine quantum and classical computing in the most efficient and innovative way. In this paper, we present a mechanism coined as Quantum Initialization for Warehouse Optimization Problem that resorts to D-Wave's Quantum Annealer. The module has been specifically designed to be embedded into already existing classical software dedicated to the optimization of a real-world industrial problem. We preliminary tested the implemented mechanism through a two-phase experiment against the classical version of the software.

While recent advances in Text-to-Speech (TTS) technology produce natural and expressive speech, they lack the option for users to select emotion and control intensity. We propose EmoKnob, a framework that allows fine-grained emotion control in speech synthesis with few-shot demonstrative samples of arbitrary emotion. Our framework leverages the expressive speaker representation space made possible by recent advances in foundation voice cloning models. Based on the few-shot capability of our emotion control framework, we propose two methods to apply emotion control on emotions described by open-ended text, enabling an intuitive interface for controlling a diverse array of nuanced emotions. To facilitate a more systematic emotional speech synthesis field, we introduce a set of evaluation metrics designed to rigorously assess the faithfulness and recognizability of emotion control frameworks. Through objective and subjective evaluations, we show that our emotion control framework effectively embeds emotions into speech and surpasses emotion expressiveness of commercial TTS services.

As one of the most advanced techniques in AI, Retrieval-Augmented Generation (RAG) techniques can offer reliable and up-to-date external knowledge, providing huge convenience for numerous tasks. Particularly in the era of AI-generated content (AIGC), the powerful capacity of retrieval in RAG in providing additional knowledge enables retrieval-augmented generation to assist existing generative AI in producing high-quality outputs. Recently, large Language Models (LLMs) have demonstrated revolutionary abilities in language understanding and generation, while still facing inherent limitations, such as hallucinations and out-of-date internal knowledge. Given the powerful abilities of RAG in providing the latest and helpful auxiliary information, retrieval-augmented large language models have emerged to harness external and authoritative knowledge bases, rather than solely relying on the model's internal knowledge, to augment the generation quality of LLMs. In this survey, we comprehensively review existing research studies in retrieval-augmented large language models (RA-LLMs), covering three primary technical perspectives: architectures, training strategies, and applications. As the preliminary knowledge, we briefly introduce the foundations and recent advances of LLMs. Then, to illustrate the practical significance of RAG for LLMs, we categorize mainstream relevant work by application areas, detailing specifically the challenges of each and the corresponding capabilities of RA-LLMs. Finally, to deliver deeper insights, we discuss current limitations and several promising directions for future research.

The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions.

Automated Driving Systems (ADS) have made great achievements in recent years thanks to the efforts from both academia and industry. A typical ADS is composed of multiple modules, including sensing, perception, planning and control, which brings together the latest advances in multiple domains. Despite these achievements, safety assurance of the systems is still of great significance, since the unsafe behavior of ADS can bring catastrophic consequences and unacceptable economic and social losses. Testing is an important approach to system validation for the deployment in practice; in the context of ADS, it is extremely challenging, due to the system complexity and multidisciplinarity. There has been a great deal of literature that focuses on the testing of ADS, and a number of surveys have also emerged to summarize the technical advances. However, most of these surveys focus on the system-level testing that is performed within software simulators, and thereby ignore the distinct features of individual modules. In this paper, we provide a comprehensive survey on the existing ADS testing literature, which takes into account both module-level and system-level testing. Specifically, we make the following contributions: (1) we build a threat model that reveals the potential safety threats for each module of an ADS; (2) we survey the module-level testing techniques for ADS and highlight the technical differences affected by the properties of the modules; (3) we also survey the system-level testing techniques, but we focus on empirical studies that take a bird's-eye view on the system, the problems due to the collaborations between modules, and the gaps between ADS testing in simulators and real world; (4) we identify the challenges and opportunities in ADS testing, which facilitates the future research in this field.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

北京阿比特科技有限公司