亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the matrix least squares problem of the form $\| \mathbf{A} \mathbf{X}-\mathbf{B} \|_F^2$ where the design matrix $\mathbf{A} \in \mathbb{R}^{N \times r}$ is tall and skinny with $N \gg r$. We propose to create a sketched version $\| \tilde{\mathbf{A}}\mathbf{X}-\tilde{\mathbf{B}} \|_F^2$ where the sketched matrices $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{B}}$ contain weighted subsets of the rows of $\mathbf{A}$ and $\mathbf{B}$, respectively. The subset of rows is determined via random sampling based on leverage score estimates for each row. We say that the sketched problem is $\epsilon$-accurate if its solution $\tilde{\mathbf{X}}_{\rm \text{opt}} = \text{argmin } \| \tilde{\mathbf{A}}\mathbf{X}-\tilde{\mathbf{B}} \|_F^2$ satisfies $\|\mathbf{A}\tilde{\mathbf{X}}_{\rm \text{opt}}-\mathbf{B} \|_F^2 \leq (1+\epsilon) \min \| \mathbf{A}\mathbf{X}-\mathbf{B} \|_F^2$ with high probability. We prove that the number of samples required for an $\epsilon$-accurate solution is $O(r/(\beta \epsilon))$ where $\beta \in (0,1]$ is a measure of the quality of the leverage score estimates.

相關內容

Truncated densities are probability density functions defined on truncated domains. They share the same parametric form with their non-truncated counterparts up to a normalizing constant. Since the computation of their normalizing constants is usually infeasible, Maximum Likelihood Estimation cannot be easily applied to estimate truncated density models. Score Matching (SM) is a powerful tool for fitting parameters using only unnormalized models. However, it cannot be directly applied here as boundary conditions used to derive a tractable SM objective are not satisfied by truncated densities. In this paper, we study parameter estimation for truncated probability densities using SM. The estimator minimizes a weighted Fisher divergence. The weight function is simply the shortest distance from a data point to the boundary of the domain. We show this choice of weight function naturally arises from minimizing the Stein discrepancy as well as upperbounding the finite-sample estimation error. The usefulness of our method is demonstrated by numerical experiments and a study on the Chicago crime data set. We also show that the proposed density estimation can correct the outlier-trimming bias caused by aggressive outlier detection methods.

We consider the problem of extracting joint and individual signals from multi-view data, that is data collected from different sources on matched samples. While existing methods for multi-view data decomposition explore single matching of data by samples, we focus on double-matched multi-view data (matched by both samples and source features). Our motivating example is the miRNA data collected from both primary tumor and normal tissues of the same subjects; the measurements from two tissues are thus matched both by subjects and by miRNAs. Our proposed double-matched matrix decomposition allows to simultaneously extract joint and individual signals across subjects, as well as joint and individual signals across miRNAs. Our estimation approach takes advantage of double-matching by formulating a new type of optimization problem with explicit row space and column space constraints, for which we develop an efficient iterative algorithm. Numerical studies indicate that taking advantage of double-matching leads to superior signal estimation performance compared to existing multi-view data decomposition based on single-matching. We apply our method to miRNA data as well as data from the English Premier League soccer matches, and find joint and individual multi-view signals that align with domain specific knowledge.

This paper introduces a new simulation-based inference procedure to model and sample from multi-dimensional probability distributions given access to i.i.d. samples, circumventing the usual approaches of explicitly modeling the density function or designing Markov chain Monte Carlo. Motivated by the seminal work on distance and isomorphism between metric measure spaces, we propose a new notion called the Reversible Gromov-Monge (RGM) distance and study how RGM can be used to design new transform samplers to perform simulation-based inference. Our RGM sampler can also estimate optimal alignments between two heterogeneous metric measure spaces $(\mathcal{X}, \mu, c_{\mathcal{X}})$ and $(\mathcal{Y}, \nu, c_{\mathcal{Y}})$ from empirical data sets, with estimated maps that approximately push forward one measure $\mu$ to the other $\nu$, and vice versa. Analytic properties of the RGM distance are derived; statistical rate of convergence, representation, and optimization questions regarding the induced sampler are studied. Synthetic and real-world examples showcasing the effectiveness of the RGM sampler are also demonstrated.

Covariance estimation for matrix-valued data has received an increasing interest in applications. Unlike previous works that rely heavily on matrix normal distribution assumption and the requirement of fixed matrix size, we propose a class of distribution-free regularized covariance estimation methods for high-dimensional matrix data under a separability condition and a bandable covariance structure. Under these conditions, the original covariance matrix is decomposed into a Kronecker product of two bandable small covariance matrices representing the variability over row and column directions. We formulate a unified framework for estimating bandable covariance, and introduce an efficient algorithm based on rank one unconstrained Kronecker product approximation. The convergence rates of the proposed estimators are established, and the derived minimax lower bound shows our proposed estimator is rate-optimal under certain divergence regimes of matrix size. We further introduce a class of robust covariance estimators and provide theoretical guarantees to deal with heavy-tailed data. We demonstrate the superior finite-sample performance of our methods using simulations and real applications from a gridded temperature anomalies dataset and a S&P 500 stock data analysis.

On-demand delivery has become increasingly popular around the world. Motivated by a large grocery chain store who offers fast on-demand delivery services, we model and solve a stochastic dynamic driver dispatching and routing problem for last-mile delivery systems where on-time performance is the main target. The system operator needs to dispatch a set of drivers and specify their delivery routes facing random demand that arrives over a fixed number of periods. The resulting stochastic dynamic program is challenging to solve due to the curse of dimensionality. We propose a novel structured approximation framework to approximate the value function via a parametrized dispatching and routing policy. We analyze the structural properties of the approximation framework and establish its performance guarantee under large-demand scenarios. We then develop efficient exact algorithms for the approximation problem based on Benders decomposition and column generation, which deliver verifiably optimal solutions within minutes. The evaluation results on a real-world data set show that our framework outperforms the current policy of the company by 36.53% on average in terms of delivery time. We also perform several policy experiments to understand the value of dynamic dispatching and routing with varying fleet sizes and dispatch frequencies.

The fact that the millimeter-wave (mmWave) multiple-input multiple-output (MIMO) channel has sparse support in the spatial domain has motivated recent compressed sensing (CS)-based mmWave channel estimation methods, where the angles of arrivals (AoAs) and angles of departures (AoDs) are quantized using angle dictionary matrices. However, the existing CS-based methods usually obtain the estimation result through one-stage channel sounding that have two limitations: (i) the requirement of large-dimensional dictionary and (ii) unresolvable quantization error. These two drawbacks are irreconcilable; improvement of the one implies deterioration of the other. To address these challenges, we propose, in this paper, a two-stage method to estimate the AoAs and AoDs of mmWave channels. In the proposed method, the channel estimation task is divided into two stages, Stage I and Stage II. Specifically, in Stage I, the AoAs are estimated by solving a multiple measurement vectors (MMV) problem. In Stage II, based on the estimated AoAs, the receive sounders are designed to estimate AoDs. The dimension of the angle dictionary in each stage can be reduced, which in turn reduces the computational complexity substantially. We then analyze the successful recovery probability (SRP) of the proposed method, revealing the superiority of the proposed framework over the existing one-stage CS-based methods. We further enhance the reconstruction performance by performing resource allocation between the two stages. We also overcome the unresolvable quantization error issue present in the prior techniques by applying the atomic norm minimization method to each stage of the proposed two-stage approach. The simulation results illustrate the substantially improved performance with low complexity of the proposed two-stage method.

Policy gradient (PG) estimation becomes a challenge when we are not allowed to sample with the target policy but only have access to a dataset generated by some unknown behavior policy. Conventional methods for off-policy PG estimation often suffer from either significant bias or exponentially large variance. In this paper, we propose the double Fitted PG estimation (FPG) algorithm. FPG can work with an arbitrary policy parameterization, assuming access to a Bellman-complete value function class. In the case of linear value function approximation, we provide a tight finite-sample upper bound on policy gradient estimation error, that is governed by the amount of distribution mismatch measured in feature space. We also establish the asymptotic normality of FPG estimation error with a precise covariance characterization, which is further shown to be statistically optimal with a matching Cramer-Rao lower bound. Empirically, we evaluate the performance of FPG on both policy gradient estimation and policy optimization, using either softmax tabular or ReLU policy networks. Under various metrics, our results show that FPG significantly outperforms existing off-policy PG estimation methods based on importance sampling and variance reduction techniques.

Recent works have derived neural networks with online correlation-based learning rules to perform \textit{kernel similarity matching}. These works applied existing linear similarity matching algorithms to nonlinear features generated with random Fourier methods. In this paper attempt to perform kernel similarity matching by directly learning the nonlinear features. Our algorithm proceeds by deriving and then minimizing an upper bound for the sum of squared errors between output and input kernel similarities. The construction of our upper bound leads to online correlation-based learning rules which can be implemented with a 1 layer recurrent neural network. In addition to generating high-dimensional linearly separable representations, we show that our upper bound naturally yields representations which are sparse and selective for specific input patterns. We compare the approximation quality of our method to neural random Fourier method and variants of the popular but non-biological "Nystr{\"o}m" method for approximating the kernel matrix. Our method appears to be comparable or better than randomly sampled Nystr{\"o}m methods when the outputs are relatively low dimensional (although still potentially higher dimensional than the inputs) but less faithful when the outputs are very high dimensional.

For a given nonnegative matrix $A=(A_{ij})$, the matrix scaling problem asks whether $A$ can be scaled to a doubly stochastic matrix $XAY$ for some positive diagonal matrices $X,Y$. The Sinkhorn algorithm is a simple iterative algorithm, which repeats row-normalization $A_{ij} \leftarrow A_{ij}/\sum_{j}A_{ij}$ and column-normalization $A_{ij} \leftarrow A_{ij}/\sum_{i}A_{ij}$ alternatively. By this algorithm, $A$ converges to a doubly stochastic matrix in limit if and only if the bipartite graph associated with $A$ has a perfect matching. This property can decide the existence of a perfect matching in a given bipartite graph $G$, which is identified with the $0,1$-matrix $A_G$. Linial, Samorodnitsky, and Wigderson showed that a polynomial number of the Sinkhorn iterations for $A_G$ decides whether $G$ has a perfect matching. In this paper, we show an extension of this result: If $G$ has no perfect matching, then a polynomial number of the Sinkhorn iterations identifies a Hall blocker -- a certificate of the nonexistence of a perfect matching. Our analysis is based on an interpretation of the Sinkhorn algorithm as alternating KL-divergence minimization (Csisz\'{a}r and Tusn\'{a}dy 1984, Gietl and Reffel 2013) and its limiting behavior for a nonscalable matrix (Aas 2014). We also relate the Sinkhorn limit with parametric network flow, principal partition of polymatroids, and the Dulmage-Mendelsohn decomposition of a bipartite graph.

We present a new sublinear time algorithm for approximating the spectral density (eigenvalue distribution) of an $n\times n$ normalized graph adjacency or Laplacian matrix. The algorithm recovers the spectrum up to $\epsilon$ accuracy in the Wasserstein-1 distance in $O(n\cdot \text{poly}(1/\epsilon))$ time given sample access to the graph. This result compliments recent work by David Cohen-Steiner, Weihao Kong, Christian Sohler, and Gregory Valiant (2018), which obtains a solution with runtime independent of $n$, but exponential in $1/\epsilon$. We conjecture that the trade-off between dimension dependence and accuracy is inherent. Our method is simple and works well experimentally. It is based on a Chebyshev polynomial moment matching method that employees randomized estimators for the matrix trace. We prove that, for any Hermitian $A$, this moment matching method returns an $\epsilon$ approximation to the spectral density using just $O({1}/{\epsilon})$ matrix-vector products with $A$. By leveraging stability properties of the Chebyshev polynomial three-term recurrence, we then prove that the method is amenable to the use of coarse approximate matrix-vector products. Our sublinear time algorithm follows from combining this result with a novel sampling algorithm for approximating matrix-vector products with a normalized graph adjacency matrix. Of independent interest, we show a similar result for the widely used \emph{kernel polynomial method} (KPM), proving that this practical algorithm nearly matches the theoretical guarantees of our moment matching method. Our analysis uses tools from Jackson's seminal work on approximation with positive polynomial kernels.

北京阿比特科技有限公司