This paper studies a diffusion control problem motivated by challenges faced by public health agencies who run clinics to serve the public. A key challenge for these agencies is to motivate individuals to participate in the services provided. They must manage the flow of (voluntary) participants so that the clinic capacity is highly utilized, but not overwhelmed. The organization can deploy costly promotion activities to increase the inflow of participants. Ideally, the system manager would like to have enough participants waiting in a queue to serve as many individuals as possible and efficiently use clinic capacity. However, if too many participants sign up, resulting in a long wait, participants may become irritated and hesitate to participate again in the future. We develop a diffusion model of managing participant inflow mechanisms. Each mechanism corresponds to choosing a particular drift rate parameter for the diffusion model. The system manager seeks to balance three different costs optimally: i) a linear holding cost that captures the congestion concerns; ii) an idleness penalty corresponding to wasted clinic capacity and negative impact on public health, and iii) costs of promotion activities. We show that a nested-threshold policy for deployment of participant inflow mechanisms is optimal under the long-run average cost criterion. In this policy, the system manager progressively deploys mechanisms in increasing order of cost, as the number of participants in the queue decreases. We derive explicit formulas for the queue length thresholds that trigger each promotion activity, providing the system manager with guidance on when to use each mechanism.
Predicting next visit diagnosis using Electronic Health Records (EHR) is an essential task in healthcare, critical for devising proactive future plans for both healthcare providers and patients. Nonetheless, many preceding studies have not sufficiently addressed the heterogeneous and hierarchical characteristics inherent in EHR data, inevitably leading to sub-optimal performance. To this end, we propose NECHO, a novel medical code-centric multimodal contrastive EHR learning framework with hierarchical regularisation. First, we integrate multifaceted information encompassing medical codes, demographics, and clinical notes using a tailored network design and a pair of bimodal contrastive losses, all of which pivot around a medical codes representation. We also regularise modality-specific encoders using a parental level information in medical ontology to learn hierarchical structure of EHR data. A series of experiments on MIMIC-III data demonstrates effectiveness of our approach.
Evidence-based medicine promises to improve the quality of healthcare by empowering medical decisions and practices with the best available evidence. The rapid growth of medical evidence, which can be obtained from various sources, poses a challenge in collecting, appraising, and synthesizing the evidential information. Recent advancements in generative AI, exemplified by large language models, hold promise in facilitating the arduous task. However, developing accountable, fair, and inclusive models remains a complicated undertaking. In this perspective, we discuss the trustworthiness of generative AI in the context of automated summarization of medical evidence.
Driven by the appealing properties of neural fields for storing and communicating 3D data, the problem of directly processing them to address tasks such as classification and part segmentation has emerged and has been investigated in recent works. Early approaches employ neural fields parameterized by shared networks trained on the whole dataset, achieving good task performance but sacrificing reconstruction quality. To improve the latter, later methods focus on individual neural fields parameterized as large Multi-Layer Perceptrons (MLPs), which are, however, challenging to process due to the high dimensionality of the weight space, intrinsic weight space symmetries, and sensitivity to random initialization. Hence, results turn out significantly inferior to those achieved by processing explicit representations, e.g., point clouds or meshes. In the meantime, hybrid representations, in particular based on tri-planes, have emerged as a more effective and efficient alternative to realize neural fields, but their direct processing has not been investigated yet. In this paper, we show that the tri-plane discrete data structure encodes rich information, which can be effectively processed by standard deep-learning machinery. We define an extensive benchmark covering a diverse set of fields such as occupancy, signed/unsigned distance, and, for the first time, radiance fields. While processing a field with the same reconstruction quality, we achieve task performance far superior to frameworks that process large MLPs and, for the first time, almost on par with architectures handling explicit representations.
Collaborative perception aims to mitigate the limitations of single-agent perception, such as occlusions, by facilitating data exchange among multiple agents. However, most current works consider a homogeneous scenario where all agents use identity sensors and perception models. In reality, heterogeneous agent types may continually emerge and inevitably face a domain gap when collaborating with existing agents. In this paper, we introduce a new open heterogeneous problem: how to accommodate continually emerging new heterogeneous agent types into collaborative perception, while ensuring high perception performance and low integration cost? To address this problem, we propose HEterogeneous ALliance (HEAL), a novel extensible collaborative perception framework. HEAL first establishes a unified feature space with initial agents via a novel multi-scale foreground-aware Pyramid Fusion network. When heterogeneous new agents emerge with previously unseen modalities or models, we align them to the established unified space with an innovative backward alignment. This step only involves individual training on the new agent type, thus presenting extremely low training costs and high extensibility. It also protects new agents' model details from disclosure since the training can be conducted by the agent owner locally. To enrich agents' data heterogeneity, we bring OPV2V-H, a new large-scale dataset with more diverse sensor types. Extensive experiments on OPV2V-H and DAIR-V2X datasets show that HEAL surpasses SOTA methods in performance while reducing the training parameters by 91.5% when integrating 3 new agent types. Code and data are available at: //github.com/yifanlu0227/HEAL.
Objective: This study quantifies the capabilities of GPT-3.5 and GPT-4 for clinical named entity recognition (NER) tasks and proposes task-specific prompts to improve their performance. Materials and Methods: We evaluated these models on two clinical NER tasks: (1) to extract medical problems, treatments, and tests from clinical notes in the MTSamples corpus, following the 2010 i2b2 concept extraction shared task, and (2) identifying nervous system disorder-related adverse events from safety reports in the vaccine adverse event reporting system (VAERS). To improve the GPT models' performance, we developed a clinical task-specific prompt framework that includes (1) baseline prompts with task description and format specification, (2) annotation guideline-based prompts, (3) error analysis-based instructions, and (4) annotated samples for few-shot learning. We assessed each prompt's effectiveness and compared the models to BioClinicalBERT. Results: Using baseline prompts, GPT-3.5 and GPT-4 achieved relaxed F1 scores of 0.634, 0.804 for MTSamples, and 0.301, 0.593 for VAERS. Additional prompt components consistently improved model performance. When all four components were used, GPT-3.5 and GPT-4 achieved relaxed F1 socres of 0.794, 0.861 for MTSamples and 0.676, 0.736 for VAERS, demonstrating the effectiveness of our prompt framework. Although these results trail BioClinicalBERT (F1 of 0.901 for the MTSamples dataset and 0.802 for the VAERS), it is very promising considering few training samples are needed. Conclusion: While direct application of GPT models to clinical NER tasks falls short of optimal performance, our task-specific prompt framework, incorporating medical knowledge and training samples, significantly enhances GPT models' feasibility for potential clinical applications.
Large language models like GPT-3.5-turbo and GPT-4 hold promise for healthcare professionals, but they may inadvertently inherit biases during their training, potentially affecting their utility in medical applications. Despite few attempts in the past, the precise impact and extent of these biases remain uncertain. Through both qualitative and quantitative analyses, we find that these models tend to project higher costs and longer hospitalizations for White populations and exhibit optimistic views in challenging medical scenarios with much higher survival rates. These biases, which mirror real-world healthcare disparities, are evident in the generation of patient backgrounds, the association of specific diseases with certain races, and disparities in treatment recommendations, etc. Our findings underscore the critical need for future research to address and mitigate biases in language models, especially in critical healthcare applications, to ensure fair and accurate outcomes for all patients.
Uncrewed Aerial Vehicle (UAV) research faces challenges with safety, scalability, costs, and ecological impact when conducting hardware testing. High-fidelity simulators offer a vital solution by replicating real-world conditions to enable the development and evaluation of novel perception and control algorithms. However, the large number of available simulators poses a significant challenge for researchers to determine which simulator best suits their specific use-case, based on each simulator's limitations and customization readiness. This paper includes a systematic overview of 38 existing UAV simulators and presents a set of decision factors for their selection, aiming to enhance the efficiency and safety of research endeavors.
Successful pharmaceutical drug development requires finding correct doses that provide an optimum balance between efficacy and toxicity. Competing responses to dose such as efficacy and toxicity often will increase with dose, and it is important to identify a range of doses to provide an acceptable efficacy response (minimum effective dose) while not causing unacceptable intolerance or toxicity (maximum tolerated dose). How this should be done is not self-evident. Relating efficacy to dose conditionally on possible toxicity may be problematic because whether toxicity occurs will not be known when a dose for a patient needs to be chosen. Copula models provide an appealing approach for incorporating an efficacy-toxicity association when the functional forms of the efficacy and toxicity dose-response models are known but may be less appealing in practice when the functional forms of the dose-response models and the particular copula association model are unknown. This paper explores the use of the BMA-Mod Bayesian model averaging framework that accommodates efficacy and toxicity responses to provide a statistically valid, distributionally flexible, and operationally practical model-agnostic strategy for predicting efficacy and toxicity outcomes both in terms of expected responses and in terms of predictions for individual patients. The performance of the approach is evaluated via simulation when efficacy and toxicity outcomes are considered marginally, when they are associated via gaussian and Archimedean copulas, and when they are expressed in terms of clinically meaningful categories. In all cases, the BMA-Mod strategy identified consistent ranges of acceptable doses.
In recent years, text summarization methods have attracted much attention again thanks to the researches on neural network models. Most of the current text summarization methods based on neural network models are supervised methods which need large-scale datasets. However, large-scale datasets are difficult to obtain in practical applications. In this paper, we model the task of extractive text summarization methods from the perspective of Information Theory, and then describe the unsupervised extractive methods with a uniform framework. To improve the feature distribution and to decrease the mutual information of summarization sentences, we propose a new sentence extraction strategy which can be applied to existing unsupervised extractive methods. Experiments are carried out on different datasets, and results show that our strategy is indeed effective and in line with expectations.
We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.