亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Crowdsourcing is the outsourcing of tasks to a crowd of contributors on a dedicated platform. The crowd on these platforms is very diversified and includes various profiles of contributors which generates data of uneven quality. However, majority voting, which is the aggregating method commonly used in platforms, gives equal weight to each contribution. To overcome this problem, we propose a method, MONITOR, which estimates the contributor's profile and aggregates the collected data by taking into account their possible imperfections thanks to the theory of belief functions. To do so, MONITOR starts by estimating the profile of the contributor through his qualification for the task and his behavior.Crowdsourcing campaigns have been carried out to collect the necessary data to test MONITOR on real data in order to compare it to existing approaches. The results of the experiments show that thanks to the use of the MONITOR method, we obtain a better rate of correct answer after aggregation of the contributions compared to the majority voting. Our contributions in this article are for the first time the proposal of a model that takes into account both the qualification of the contributor and his behavior in the estimation of his profile. For the second one, the weakening and the aggregation of the answers according to the estimated profiles.

相關內容

Kemeny's rule is one of the most studied and well-known voting schemes with various important applications in computational social choice and biology. Recently, Kemeny's rule was generalized via a set-wise approach by Gilbert et. al. Following this paradigm, we have shown in \cite{Phung-Hamel-2023} that the $3$-wise Kemeny voting scheme induced by the $3$-wise Kendall-tau distance presents interesting advantages in comparison with the classical Kemeny rule. While the $3$-wise Kemeny problem, which consists of computing the set of $3$-wise consensus rankings of a voting profile, is NP-hard, we establish in this paper several generalizations of the Major Order Theorems, as obtained in \cite{Milosz-Hamel-2020} for the classical Kemeny rule, for the $3$-wise Kemeny voting scheme to achieve a substantial search space reduction by efficiently determining in polynomial time the relative orders of pairs of alternatives. Essentially, our theorems quantify precisely the non-trivial property that if the preference for an alternative over another one in an election is strong enough, not only in the head-to-head competition but even when taking into consideration one or two more alternatives, then the relative order of these two alternatives in every $3$-wise consensus ranking must be as expected. Moreover, we show that the well-known $3/4$-majority rule of Betzler et al. for the classical Kemeny rule is only valid for elections with no more than $5$ alternatives with respect to the $3$-wise Kemeny scheme. Examples are also provided to show that the $3$-wise Kemeny rule is more resistant to manipulation than the classical one.

In this paper we obtain complexity bounds for computational problems on algebraic power series over several commuting variables. The power series are specified by systems of polynomial equations: a formalism closely related to weighted context-free grammars. We focus on three problems -- decide whether a given algebraic series is identically zero, determine whether all but finitely many coefficients are zero, and compute the coefficient of a specific monomial. We relate these questions to well-known computational problems on arithmetic circuits and thereby show that all three problems lie in the counting hierarchy. Our main result improves the best known complexity bound on deciding zeroness of an algebraic series. This problem is known to lie in PSPACE by reduction to the decision problem for the existential fragment of the theory of real closed fields. Here we show that the problem lies in the counting hierarchy by reduction to the problem of computing the degree of a polynomial given by an arithmetic circuit. As a corollary we obtain new complexity bounds on multiplicity equivalence of context-free grammars restricted to a bounded language, language inclusion of a nondeterministic finite automaton in an unambiguous context-free grammar, and language inclusion of a non-deterministic context-free grammar in an unambiguous finite automaton.

Besov priors are nonparametric priors that model spatially inhomogeneous functions. They are routinely used in inverse problems and imaging, where they exhibit attractive sparsity-promoting and edge-preserving features. A recent line of work has initiated the study of their asymptotic frequentist convergence properties. In the present paper, we consider the theoretical recovery performance of the posterior distributions associated to Besov-Laplace priors in the density estimation model, under the assumption that the observations are generated by a possibly spatially inhomogeneous true density belonging to a Besov space. We improve on existing results and show that carefully tuned Besov-Laplace priors attain optimal posterior contraction rates. Furthermore, we show that hierarchical procedures involving a hyper-prior on the regularity parameter lead to adaptation to any smoothness level.

Recent attention on secure multiparty computation and blockchain technology has garnered new interest in developing auction protocols in a decentralized setting. In this paper, we propose a secure and private Vickrey auction protocol that addresses the challenge of maintaining auction correctness while preserving the confidentiality of bidders' information. Our protocol leverages secure multiparty computation (SMPC) techniques that enable decentralized computation of the final payment price without disclosing additional information. The total computational complexity of our proposed protocol, including preparation, is $O(n^2 k)$, and the complexity for the main auction is $O(n k)$. Furthermore, we show that our protocol is resistant to collusion and the auction outcome is publicly verifiable, which prevents dishonest bidders from altering this outcome.

In this paper, we propose a distributed algorithm to control a team of cooperating robots aiming to protect a target from a set of intruders. Specifically, we model the strategy of the defending team by means of an online optimization problem inspired by the emerging distributed aggregative framework. In particular, each defending robot determines its own position depending on (i) the relative position between an associated intruder and the target, (ii) its contribution to the barycenter of the team, and (iii) collisions to avoid with its teammates. We highlight that each agent is only aware of local, noisy measurements about the location of the associated intruder and the target. Thus, in each robot, our algorithm needs to (i) locally reconstruct global unavailable quantities and (ii) predict its current objective functions starting from the local measurements. The effectiveness of the proposed methodology is corroborated by simulations and experiments on a team of cooperating quadrotors.

Autonomous Nano Aerial Vehicles have been increasingly popular in surveillance and monitoring operations due to their efficiency and maneuverability. Once a target location has been reached, drones do not have to remain active during the mission. It is possible for the vehicle to perch and stop its motors in such situations to conserve energy, as well as maintain a static position in unfavorable flying conditions. In the perching target estimation phase, the steady and accuracy of a visual camera with markers is a significant challenge. It is rapidly detectable from afar when using a large marker, but when the drone approaches, it quickly disappears as out of camera view. In this paper, a vision-based target poses estimation method using multiple markers is proposed to deal with the above-mentioned problems. First, a perching target with a small marker inside a larger one is designed to improve detection capability at wide and close ranges. Second, the relative poses of the flying vehicle are calculated from detected markers using a monocular camera. Next, a Kalman filter is applied to provide a more stable and reliable pose estimation, especially when the measurement data is missing due to unexpected reasons. Finally, we introduced an algorithm for merging the poses data from multi markers. The poses are then sent to the position controller to align the drone and the marker's center and steer it to perch on the target. The experimental results demonstrated the effectiveness and feasibility of the adopted approach. The drone can perch successfully onto the center of the markers with the attached 25mm-diameter rounded magnet.

The use of observed wearable sensor data (e.g., photoplethysmograms [PPG]) to infer health measures (e.g., glucose level or blood pressure) is a very active area of research. Such technology can have a significant impact on health screening, chronic disease management and remote monitoring. A common approach is to collect sensor data and corresponding labels from a clinical grade device (e.g., blood pressure cuff), and train deep learning models to map one to the other. Although well intentioned, this approach often ignores a principled analysis of whether the input sensor data has enough information to predict the desired metric. We analyze the task of predicting blood pressure from PPG pulse wave analysis. Our review of the prior work reveals that many papers fall prey data leakage, and unrealistic constraints on the task and the preprocessing steps. We propose a set of tools to help determine if the input signal in question (e.g., PPG) is indeed a good predictor of the desired label (e.g., blood pressure). Using our proposed tools, we have found that blood pressure prediction using PPG has a high multi-valued mapping factor of 33.2% and low mutual information of 9.8%. In comparison, heart rate prediction using PPG, a well-established task, has a very low multi-valued mapping factor of 0.75% and high mutual information of 87.7%. We argue that these results provide a more realistic representation of the current progress towards to goal of wearable blood pressure measurement via PPG pulse wave analysis.

Some neurons in deep networks specialize in recognizing highly specific perceptual, structural, or semantic features of inputs. In computer vision, techniques exist for identifying neurons that respond to individual concept categories like colors, textures, and object classes. But these techniques are limited in scope, labeling only a small subset of neurons and behaviors in any network. Is a richer characterization of neuron-level computation possible? We introduce a procedure (called MILAN, for mutual-information-guided linguistic annotation of neurons) that automatically labels neurons with open-ended, compositional, natural language descriptions. Given a neuron, MILAN generates a description by searching for a natural language string that maximizes pointwise mutual information with the image regions in which the neuron is active. MILAN produces fine-grained descriptions that capture categorical, relational, and logical structure in learned features. These descriptions obtain high agreement with human-generated feature descriptions across a diverse set of model architectures and tasks, and can aid in understanding and controlling learned models. We highlight three applications of natural language neuron descriptions. First, we use MILAN for analysis, characterizing the distribution and importance of neurons selective for attribute, category, and relational information in vision models. Second, we use MILAN for auditing, surfacing neurons sensitive to protected categories like race and gender in models trained on datasets intended to obscure these features. Finally, we use MILAN for editing, improving robustness in an image classifier by deleting neurons sensitive to text features spuriously correlated with class labels.

Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.

We examine the problem of question answering over knowledge graphs, focusing on simple questions that can be answered by the lookup of a single fact. Adopting a straightforward decomposition of the problem into entity detection, entity linking, relation prediction, and evidence combination, we explore simple yet strong baselines. On the popular SimpleQuestions dataset, we find that basic LSTMs and GRUs plus a few heuristics yield accuracies that approach the state of the art, and techniques that do not use neural networks also perform reasonably well. These results show that gains from sophisticated deep learning techniques proposed in the literature are quite modest and that some previous models exhibit unnecessary complexity.

北京阿比特科技有限公司