亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This research presents a comprehensive methodology for utilizing an ontology-driven structured prompts system in interplay with ChatGPT, a widely used large language model (LLM). The study develops formal models, both information and functional, and establishes the methodological foundations for integrating ontology-driven prompts with ChatGPT's meta-learning capabilities. The resulting productive triad comprises the methodological foundations, advanced information technology, and the OntoChatGPT system, which collectively enhance the effectiveness and performance of chatbot systems. The implementation of this technology is demonstrated using the Ukrainian language within the domain of rehabilitation. By applying the proposed methodology, the OntoChatGPT system effectively extracts entities from contexts, classifies them, and generates relevant responses. The study highlights the versatility of the methodology, emphasizing its applicability not only to ChatGPT but also to other chatbot systems based on LLMs, such as Google's Bard utilizing the PaLM 2 LLM. The underlying principles of meta-learning, structured prompts, and ontology-driven information retrieval form the core of the proposed methodology, enabling their adaptation and utilization in various LLM-based systems. This versatile approach opens up new possibilities for NLP and dialogue systems, empowering developers to enhance the performance and functionality of chatbot systems across different domains and languages.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Guidance · 優化器 · Extensibility · 相互獨立的 ·
2023 年 9 月 1 日

This study introduces an efficient and effective method, MeDM, that utilizes pre-trained image Diffusion Models for video-to-video translation with consistent temporal flow. The proposed framework can render videos from scene position information, such as a normal G-buffer, or perform text-guided editing on videos captured in real-world scenarios. We employ explicit optical flows to construct a practical coding that enforces physical constraints on generated frames and mediates independent frame-wise scores. By leveraging this coding, maintaining temporal consistency in the generated videos can be framed as an optimization problem with a closed-form solution. To ensure compatibility with Stable Diffusion, we also suggest a workaround for modifying observed-space scores in latent-space Diffusion Models. Notably, MeDM does not require fine-tuning or test-time optimization of the Diffusion Models. Through extensive qualitative, quantitative, and subjective experiments on various benchmarks, the study demonstrates the effectiveness and superiority of the proposed approach. Project page can be found at //medm2023.github.io

This paper presents a solution to the challenge of mitigating carbon emissions from hosting large-scale machine learning (ML) inference services. ML inference is critical to modern technology products, but it is also a significant contributor to carbon footprint. We introduce Clover, a carbon-friendly ML inference service runtime system that balances performance, accuracy, and carbon emissions through mixed-quality models and GPU resource partitioning. Our experimental results demonstrate that Clover is effective in substantially reducing carbon emissions while maintaining high accuracy and meeting service level agreement (SLA) targets.

In this work, we present MaxViT-UNet, an Encoder-Decoder based hybrid vision transformer (CNN-Transformer) for medical image segmentation. The proposed Hybrid Decoder, based on MaxViT-block, is designed to harness the power of both the convolution and self-attention mechanisms at each decoding stage with a nominal memory and computational burden. The inclusion of multi-axis self-attention, within each decoder stage, significantly enhances the discriminating capacity between the object and background regions, thereby helping in improving the segmentation efficiency. In the Hybrid Decoder block, the fusion process commences by integrating the upsampled lower-level decoder features, obtained through transpose convolution, with the skip-connection features derived from the hybrid encoder. Subsequently, the fused features undergo refinement through the utilization of a multi-axis attention mechanism. The proposed decoder block is repeated multiple times to progressively segment the nuclei regions. Experimental results on MoNuSeg18 and MoNuSAC20 dataset demonstrates the effectiveness of the proposed technique. Our MaxViT-UNet outperformed the previous CNN-based (UNet) and Transformer-based (Swin-UNet) techniques by a considerable margin on both of the standard datasets. The following github (//github.com/PRLAB21/MaxViT-UNet) contains the implementation and trained weights.

This study presents a novel zero-shot user-defined keyword spotting model that utilizes the audio-phoneme relationship of the keyword to improve performance. Unlike the previous approach that estimates at utterance level, we use both utterance and phoneme level information. Our proposed method comprises a two-stream speech encoder architecture, self-attention-based pattern extractor, and phoneme-level detection loss for high performance in various pronunciation environments. Based on experimental results, our proposed model outperforms the baseline model and achieves competitive performance compared with full-shot keyword spotting models. Our proposed model significantly improves the EER and AUC across all datasets, including familiar words, proper nouns, and indistinguishable pronunciations, with an average relative improvement of 67% and 80%, respectively. The implementation code of our proposed model is available at //github.com/ncsoft/PhonMatchNet.

We present Point-TTA, a novel test-time adaptation framework for point cloud registration (PCR) that improves the generalization and the performance of registration models. While learning-based approaches have achieved impressive progress, generalization to unknown testing environments remains a major challenge due to the variations in 3D scans. Existing methods typically train a generic model and the same trained model is applied on each instance during testing. This could be sub-optimal since it is difficult for the same model to handle all the variations during testing. In this paper, we propose a test-time adaptation approach for PCR. Our model can adapt to unseen distributions at test-time without requiring any prior knowledge of the test data. Concretely, we design three self-supervised auxiliary tasks that are optimized jointly with the primary PCR task. Given a test instance, we adapt our model using these auxiliary tasks and the updated model is used to perform the inference. During training, our model is trained using a meta-auxiliary learning approach, such that the adapted model via auxiliary tasks improves the accuracy of the primary task. Experimental results demonstrate the effectiveness of our approach in improving generalization of point cloud registration and outperforming other state-of-the-art approaches.

We introduce Affective Visual Dialog, an emotion explanation and reasoning task as a testbed for research on understanding the formation of emotions in visually grounded conversations. The task involves three skills: (1) Dialog-based Question Answering (2) Dialog-based Emotion Prediction and (3) Affective emotion explanation generation based on the dialog. Our key contribution is the collection of a large-scale dataset, dubbed AffectVisDial, consisting of 50K 10-turn visually grounded dialogs as well as concluding emotion attributions and dialog-informed textual emotion explanations, resulting in a total of 27,180 working hours. We explain our design decisions in collecting the dataset and introduce the questioner and answerer tasks that are associated with the participants in the conversation. We train and demonstrate solid Affective Visual Dialog baselines adapted from state-of-the-art models. Remarkably, the responses generated by our models show promising emotional reasoning abilities in response to visually grounded conversations. Our project page is available at //affective-visual-dialog.github.io.

This paper surveys research works in the quickly advancing field of instruction tuning (IT), a crucial technique to enhance the capabilities and controllability of large language models (LLMs). Instruction tuning refers to the process of further training LLMs on a dataset consisting of \textsc{(instruction, output)} pairs in a supervised fashion, which bridges the gap between the next-word prediction objective of LLMs and the users' objective of having LLMs adhere to human instructions. In this work, we make a systematic review of the literature, including the general methodology of IT, the construction of IT datasets, the training of IT models, and applications to different modalities, domains and applications, along with an analysis on aspects that influence the outcome of IT (e.g., generation of instruction outputs, size of the instruction dataset, etc). We also review the potential pitfalls of IT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies and suggest some avenues for fruitful research.

With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

北京阿比特科技有限公司