亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The increasing use of complex and opaque black box models requires the adoption of interpretable measures, one such option is extractive rationalizing models, which serve as a more interpretable alternative. These models, also known as Explain-Then-Predict models, employ an explainer model to extract rationales and subsequently condition the predictor with the extracted information. Their primary objective is to provide precise and faithful explanations, represented by the extracted rationales. In this paper, we take a semi-supervised approach to optimize for the plausibility of extracted rationales. We adopt a pre-trained natural language inference (NLI) model and further fine-tune it on a small set of supervised rationales ($10\%$). The NLI predictor is leveraged as a source of supervisory signals to the explainer via entailment alignment. We show that, by enforcing the alignment agreement between the explanation and answer in a question-answering task, the performance can be improved without access to ground truth labels. We evaluate our approach on the ERASER dataset and show that our approach achieves comparable results with supervised extractive models and outperforms unsupervised approaches by $> 100\%$.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · 得分 · 優化器 · 大語言模型 ·
2024 年 3 月 26 日

Impressive advances in text-to-image (T2I) generative models have yielded a plethora of high performing models which are able to generate aesthetically appealing, photorealistic images. Despite the progress, these models still struggle to produce images that are consistent with the input prompt, oftentimes failing to capture object quantities, relations and attributes properly. Existing solutions to improve prompt-image consistency suffer from the following challenges: (1) they oftentimes require model fine-tuning, (2) they only focus on nearby prompt samples, and (3) they are affected by unfavorable trade-offs among image quality, representation diversity, and prompt-image consistency. In this paper, we address these challenges and introduce a T2I optimization-by-prompting framework, OPT2I, which leverages a large language model (LLM) to improve prompt-image consistency in T2I models. Our framework starts from a user prompt and iteratively generates revised prompts with the goal of maximizing a consistency score. Our extensive validation on two datasets, MSCOCO and PartiPrompts, shows that OPT2I can boost the initial consistency score by up to 24.9% in terms of DSG score while preserving the FID and increasing the recall between generated and real data. Our work paves the way toward building more reliable and robust T2I systems by harnessing the power of LLMs.

Passive non-line-of-sight (NLOS) imaging has witnessed rapid development in recent years, due to its ability to image objects that are out of sight. The light transport condition plays an important role in this task since changing the conditions will lead to different imaging models. Existing learning-based NLOS methods usually train independent models for different light transport conditions, which is computationally inefficient and impairs the practicality of the models. In this work, we propose NLOS-LTM, a novel passive NLOS imaging method that effectively handles multiple light transport conditions with a single network. We achieve this by inferring a latent light transport representation from the projection image and using this representation to modulate the network that reconstructs the hidden image from the projection image. We train a light transport encoder together with a vector quantizer to obtain the light transport representation. To further regulate this representation, we jointly learn both the reconstruction network and the reprojection network during training. A set of light transport modulation blocks is used to modulate the two jointly trained networks in a multi-scale way. Extensive experiments on a large-scale passive NLOS dataset demonstrate the superiority of the proposed method. The code is available at //github.com/JerryOctopus/NLOS-LTM.

An online non-convex optimization problem is considered where the goal is to minimize the flow time (total delay) of a set of jobs by modulating the number of active servers, but with a switching cost associated with changing the number of active servers over time. Each job can be processed by at most one fixed speed server at any time. Compared to the usual online convex optimization (OCO) problem with switching cost, the objective function considered is non-convex and more importantly, at each time, it depends on all past decisions and not just the present one. Both worst-case and stochastic inputs are considered; for both cases, competitive algorithms are derived.

Multi-Agent Path Finding (MAPF) in crowded environments presents a challenging problem in motion planning, aiming to find collision-free paths for all agents in the system. MAPF finds a wide range of applications in various domains, including aerial swarms, autonomous warehouse robotics, and self-driving vehicles. Current approaches to MAPF generally fall into two main categories: centralized and decentralized planning. Centralized planning suffers from the curse of dimensionality when the number of agents or states increases and thus does not scale well in large and complex environments. On the other hand, decentralized planning enables agents to engage in real-time path planning within a partially observable environment, demonstrating implicit coordination. However, they suffer from slow convergence and performance degradation in dense environments. In this paper, we introduce CRAMP, a novel crowd-aware decentralized reinforcement learning approach to address this problem by enabling efficient local communication among agents via Graph Neural Networks (GNNs), facilitating situational awareness and decision-making capabilities in congested environments. We test CRAMP on simulated environments and demonstrate that our method outperforms the state-of-the-art decentralized methods for MAPF on various metrics. CRAMP improves the solution quality up to 59% measured in makespan and collision count, and up to 35% improvement in success rate in comparison to previous methods.

Learning graph generative models over latent spaces has received less attention compared to models that operate on the original data space and has so far demonstrated lacklustre performance. We present GLAD a latent space graph generative model. Unlike most previous latent space graph generative models, GLAD operates on a discrete latent space that preserves to a significant extent the discrete nature of the graph structures making no unnatural assumptions such as latent space continuity. We learn the prior of our discrete latent space by adapting diffusion bridges to its structure. By operating over an appropriately constructed latent space we avoid relying on decompositions that are often used in models that operate in the original data space. We present experiments on a series of graph benchmark datasets which clearly show the superiority of the discrete latent space and obtain state of the art graph generative performance, making GLAD the first latent space graph generative model with competitive performance. Our source code is published at: \url{//github.com/v18nguye/GLAD}.

Recent advancements in diffusion models have positioned them at the forefront of image generation. Despite their superior performance, diffusion models are not without drawbacks; they are characterized by complex architectures and substantial computational demands, resulting in significant latency due to their iterative sampling process. To mitigate these limitations, we introduce a dual approach involving model miniaturization and a reduction in sampling steps, aimed at significantly decreasing model latency. Our methodology leverages knowledge distillation to streamline the U-Net and image decoder architectures, and introduces an innovative one-step DM training technique that utilizes feature matching and score distillation. We present two models, SDXS-512 and SDXS-1024, achieving inference speeds of approximately 100 FPS (30x faster than SD v1.5) and 30 FP (60x faster than SDXL) on a single GPU, respectively. Moreover, our training approach offers promising applications in image-conditioned control, facilitating efficient image-to-image translation.

Writing declarative models has numerous benefits, ranging from automated reasoning and correction of design-level properties before systems are built, to automated testing and debugging of their implementations after they are built. Alloy is a declarative modeling language that is well-suited for verifying system designs. A key strength of Alloy is its scenario-finding toolset, the Analyzer, which allows users to explore all valid scenarios that adhere to the model's constraints up to a user-provided scope. However, even with visualized scenarios, it is difficult to write correct Alloy models. To address this, a growing body of work explores different techniques for debugging Alloy models. In order to develop and evaluate these techniques in an effective manor, this paper presents an empirical study of over 97,000 models written by novice users trying to learn Alloy. We investigate how users write both correct and incorrect models in order to produce a comprehensive benchmark for future use as well as a series of observations to guide debugging and educational efforts for Alloy model development.

Advanced diffusion-based Text-to-Image (T2I) models, such as the Stable Diffusion Model, have made significant progress in generating diverse and high-quality images using text prompts alone. However, when non-famous users require personalized image generation for their identities (IDs), the T2I models fail to accurately generate their ID-related images. The main problem is that pre-trained T2I models do not learn the mapping between the new ID prompts and their corresponding visual content. The previous methods either failed to accurately fit the face region or lost the interactive generative ability with other existing concepts in T2I models. In other words, they are unable to generate T2I-aligned and semantic-fidelity images for the given prompts with other concepts such as scenes (``Eiffel Tower''), actions (``holding a basketball''), and facial attributes (``eyes closed''). In this paper, we focus on inserting accurate and interactive ID embedding into the Stable Diffusion Model for semantic-fidelity personalized generation. We address this challenge from two perspectives: face-wise region fitting and semantic-fidelity token optimization. Specifically, we first visualize the attention overfit problem and propose a face-wise attention loss to fit the face region instead of entangling ID-unrelated information, such as face layout and background. This key trick significantly enhances the ID accuracy and interactive generative ability with other existing concepts. Then, we optimize one ID representation as multiple per-stage tokens where each token contains two disentangled features. This expansion of the textual conditioning space improves semantic-fidelity control. Extensive experiments validate that our results exhibit superior ID accuracy, text-based manipulation ability, and generalization compared to previous methods.

Diffusion models have emerged as a prominent class of generative models, surpassing previous methods regarding sample quality and training stability. Recent works have shown the advantages of diffusion models in improving reinforcement learning (RL) solutions, including as trajectory planners, expressive policy classes, data synthesizers, etc. This survey aims to provide an overview of the advancements in this emerging field and hopes to inspire new avenues of research. First, we examine several challenges encountered by current RL algorithms. Then, we present a taxonomy of existing methods based on the roles played by diffusion models in RL and explore how the existing challenges are addressed. We further outline successful applications of diffusion models in various RL-related tasks while discussing the limitations of current approaches. Finally, we conclude the survey and offer insights into future research directions, focusing on enhancing model performance and applying diffusion models to broader tasks. We are actively maintaining a GitHub repository for papers and other related resources in applying diffusion models in RL: //github.com/apexrl/Diff4RLSurvey .

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

北京阿比特科技有限公司