Image Edge detection (ED) is a base task in computer vision. While the performance of the ED algorithm has been improved greatly by introducing CNN-based models, current models still suffer from unsatisfactory precision rates especially when only a low error toleration distance is allowed. Therefore, model architecture for more precise predictions still needs an investigation. On the other hand, the unavoidable noise training data provided by humans would lead to unsatisfactory model predictions even when inputs are edge maps themselves, which also needs a solution. In this paper, more precise ED models are presented with cascaded skipping density blocks (CSDB). Our models obtain state-of-the-art(SOTA) predictions in several datasets, especially in average precision rate (AP), over a high-standard benchmark, which is confirmed by extensive experiments. Also, a novel modification on data augmentation for training is employed, which allows noiseless data to be employed in model training for the first time, and thus further improves the model performance. The relative Python codes can be found on //github.com/Hao-B-Shu/SDPED.
We study the design of effort-maximizing grading schemes between agents with private abilities. Assuming agents derive value from the information their grade reveals about their ability, we find that more informative grading schemes induce more competitive contests. In the contest framework, we investigate the effect of manipulating individual prizes and increasing competition on expected effort, identifying conditions on ability distributions and cost functions under which these transformations may encourage or discourage effort. Our results suggest that more informative grading schemes encourage effort when agents of moderate ability are highly likely, and discourage effort when such agents are unlikely.
We consider the problem of sampling a high dimensional multimodal target probability measure. We assume that a good proposal kernel to move only a subset of the degrees of freedoms (also known as collective variables) is known a priori. This proposal kernel can for example be built using normalizing flows. We show how to extend the move from the collective variable space to the full space and how to implement an accept-reject step in order to get a reversible chain with respect to a target probability measure. The accept-reject step does not require to know the marginal of the original measure in the collective variable (namely to know the free energy). The obtained algorithm admits several variants, some of them being very close to methods which have been proposed previously in the literature. We show how the obtained acceptance ratio can be expressed in terms of the work which appears in the Jarzynski-Crooks equality, at least for some variants. Numerical illustrations demonstrate the efficiency of the approach on various simple test cases, and allow us to compare the variants of the algorithm.
Generalized linear mixed models (GLMMs) are a widely used tool in statistical analysis. The main bottleneck of many computational approaches lies in the inversion of the high dimensional precision matrices associated with the random effects. Such matrices are typically sparse; however, the sparsity pattern resembles a multi partite random graph, which does not lend itself well to default sparse linear algebra techniques. Notably, we show that, for typical GLMMs, the Cholesky factor is dense even when the original precision is sparse. We thus turn to approximate iterative techniques, in particular to the conjugate gradient (CG) method. We combine a detailed analysis of the spectrum of said precision matrices with results from random graph theory to show that CG-based methods applied to high-dimensional GLMMs typically achieve a fixed approximation error with a total cost that scales linearly with the number of parameters and observations. Numerical illustrations with both real and simulated data confirm the theoretical findings, while at the same time illustrating situations, such as nested structures, where CG-based methods struggle.
In decision-making, maxitive functions are used for worst-case and best-case evaluations. Maxitivity gives rise to a rich structure that is well-studied in the context of the pointwise order. In this article, we investigate maxitivity with respect to general preorders and provide a representation theorem for such functionals. The results are illustrated for different stochastic orders in the literature, including the usual stochastic order, the increasing convex/concave order, and the dispersive order.
A Riemannian geometric framework for Markov chain Monte Carlo (MCMC) is developed where using the Fisher-Rao metric on the manifold of probability density functions (pdfs), informed proposal densities for Metropolis-Hastings (MH) algorithms are constructed. We exploit the square-root representation of pdfs under which the Fisher-Rao metric boils down to the standard $L^2$ metric on the positive orthant of the unit hypersphere. The square-root representation allows us to easily compute the geodesic distance between densities, resulting in a straightforward implementation of the proposed geometric MCMC methodology. Unlike the random walk MH that blindly proposes a candidate state using no information about the target, the geometric MH algorithms move an uninformed base density (e.g., a random walk proposal density) towards different global/local approximations of the target density, allowing effective exploration of the distribution simultaneously at different granular levels of the state space. We compare the proposed geometric MH algorithm with other MCMC algorithms for various Markov chain orderings, namely the covariance, efficiency, Peskun, and spectral gap orderings. The superior performance of the geometric algorithms over other MH algorithms like the random walk Metropolis, independent MH, and variants of Metropolis adjusted Langevin algorithms is demonstrated in the context of various multimodal, nonlinear, and high dimensional examples. In particular, we use extensive simulation and real data applications to compare these algorithms for analyzing mixture models, logistic regression models, spatial generalized linear mixed models and ultra-high dimensional Bayesian variable selection models. A publicly available R package accompanies the article.
The purpose of this paper is to employ the language of Cartan moving frames to study the geometry of the data manifolds and its Riemannian structure, via the data information metric and its curvature at data points. Using this framework and through experiments, explanations on the response of a neural network are given by pointing out the output classes that are easily reachable from a given input. This emphasizes how the proposed mathematical relationship between the output of the network and the geometry of its inputs can be exploited as an explainable artificial intelligence tool.
The gradient bounds of generalized barycentric coordinates play an essential role in the $H^1$ norm approximation error estimate of generalized barycentric interpolations. Similarly, the $H^k$ norm, $k>1$, estimate needs upper bounds of high-order derivatives, which are not available in the literature. In this paper, we derive such upper bounds for the Wachspress generalized barycentric coordinates on simple convex $d$-dimensional polytopes, $d\ge 1$. The result can be used to prove optimal convergence for Wachspress-based polytopal finite element approximation of, for example, fourth-order elliptic equations. Another contribution of this paper is to compare various shape-regularity conditions for simple convex polytopes, and to clarify their relations using knowledge from convex geometry.
In industry, online randomized controlled experiment (a.k.a A/B experiment) is a standard approach to measure the impact of a causal change. These experiments have small treatment effect to reduce the potential blast radius. As a result, these experiments often lack statistical significance due to low signal-to-noise ratio. To improve the precision (or reduce standard error), we introduce the idea of trigger observations where the output of the treatment and the control model are different. We show that the evaluation with full information about trigger observations (full knowledge) improves the precision in comparison to a baseline method. However, detecting all such trigger observations is a costly affair, hence we propose a sampling based evaluation method (partial knowledge) to reduce the cost. The randomness of sampling introduces bias in the estimated outcome. We theoretically analyze this bias and show that the bias is inversely proportional to the number of observations used for sampling. We also compare the proposed evaluation methods using simulation and empirical data. In simulation, evaluation with full knowledge reduces the standard error as much as 85%. In empirical setup, evaluation with partial knowledge reduces the standard error by 36.48%.
Training Data Detection (TDD) is a task aimed at determining whether a specific data instance is used to train a machine learning model. In the computer security literature, TDD is also referred to as Membership Inference Attack (MIA). Given its potential to assess the risks of training data breaches, ensure copyright authentication, and verify model unlearning, TDD has garnered significant attention in recent years, leading to the development of numerous methods. Despite these advancements, there is no comprehensive benchmark to thoroughly evaluate the effectiveness of TDD methods. In this work, we introduce TDDBench, which consists of 13 datasets spanning three data modalities: image, tabular, and text. We benchmark 21 different TDD methods across four detection paradigms and evaluate their performance from five perspectives: average detection performance, best detection performance, memory consumption, and computational efficiency in both time and memory. With TDDBench, researchers can identify bottlenecks and areas for improvement in TDD algorithms, while practitioners can make informed trade-offs between effectiveness and efficiency when selecting TDD algorithms for specific use cases. Our large-scale benchmarking also reveals the generally unsatisfactory performance of TDD algorithms across different datasets. To enhance accessibility and reproducibility, we open-source TDDBench for the research community.
We have implemented support for Padauk microcontrollers, tiny 8-Bit devices with 60 B to 256 B of RAM, in the Small Device C Compiler (SDCC), showing that the use of (mostly) standard C to program such minimal devices is feasible. We report on our experience and on the difficulties in supporting the hardware multithreading present on some of these devices. To make the devices a better target for C, we propose various enhancements of the architecture, and empirically evaluated their impact on code size.