亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Inter-agent relative localization is critical for many multi-robot systems operating in the absence of external positioning infrastructure or prior environmental knowledge. We propose a novel inter-agent relative 3D pose estimation system where each participating agent is equipped with several ultra-wideband (UWB) ranging tags. Prior work typically supplements noisy UWB range measurements with additional continuously transmitted data (e.g., odometry) leading to potential scaling issues with increased team size and/or decreased communication network capability. By equipping each agent with multiple UWB antennas, our approach addresses these concerns by using only locally collected UWB range measurements, a priori state constraints, and event-based detections of when said constraints are violated. The addition of our learned mean ranging bias correction improves our approach by an additional 19% positional error, and gives us an overall experimental mean absolute position and heading errors of 0.24m and 9.5 degrees respectively. When compared to other state-of-the-art approaches, our work demonstrates improved performance over similar systems, while remaining competitive with methods that have significantly higher communication costs. Additionally, we make our datasets available.

相關內容

Finding the root causes of anomalies in cloud computing systems quickly is crucial to ensure availability and efficiency since accurate root causes can guide engineers to take appropriate actions to address the anomalies and maintain customer satisfaction. However, it is difficult to investigate and identify the root causes based on large-scale and high-dimension monitoring data collected from complex cloud computing environments. Due to the inherently dynamic characteristics of cloud computing systems, the existing approaches in practice largely rely on manual analyses for flexibility and reliability, but massive unpredictable factors and high data complexity make the process time-consuming. Despite recent advances in automated detection and investigation approaches, the speed and quality of root cause analyses remain limited by the lack of expert involvement in these approaches. The limitations found in the current solutions motivate us to propose a visual analytics approach that facilitates the interactive investigation of the anomaly root causes in cloud computing systems. We identified three challenges, namely, a) modeling databases for the root cause investigation, b) inferring root causes from large-scale time series, and c) building comprehensible investigation results. In collaboration with domain experts, we addressed these challenges with RCInvestigator, a novel visual analytics system that establishes a tight collaboration between human and machine and assists experts in investigating the root causes of cloud computing system anomalies. We evaluated the effectiveness of RCInvestigator through two use cases based on real-world data and received positive feedback from experts.

Combining semantic information with behavioral data is a crucial research area in recommender systems. A promising approach involves leveraging external knowledge to enrich behavioral-based recommender systems with abundant semantic information. However, this approach faces two primary challenges: denoising raw external knowledge and adapting semantic representations. To address these challenges, we propose an External Knowledge-Enhanced Recommendation method with LLM Assistance (TRAWL). This method utilizes large language models (LLMs) to extract relevant recommendation knowledge from raw external data and employs a contrastive learning strategy for adapter training. Experiments on public datasets and real-world online recommender systems validate the effectiveness of our approach.

While Vision-Language Models (VLMs) hold promise for tasks requiring extensive collaboration, traditional multi-agent simulators have facilitated rich explorations of an interactive artificial society that reflects collective behavior. However, these existing simulators face significant limitations. Firstly, they struggle with handling large numbers of agents due to high resource demands. Secondly, they often assume agents possess perfect information and limitless capabilities, hindering the ecological validity of simulated social interactions. To bridge this gap, we propose a multi-agent Minecraft simulator, MineLand, that bridges this gap by introducing three key features: large-scale scalability, limited multimodal senses, and physical needs. Our simulator supports 64 or more agents. Agents have limited visual, auditory, and environmental awareness, forcing them to actively communicate and collaborate to fulfill physical needs like food and resources. Additionally, we further introduce an AI agent framework, Alex, inspired by multitasking theory, enabling agents to handle intricate coordination and scheduling. Our experiments demonstrate that the simulator, the corresponding benchmark, and the AI agent framework contribute to more ecological and nuanced collective behavior.The source code of MineLand and Alex is openly available at //github.com/cocacola-lab/MineLand.

Developing autonomous agents that can strategize and cooperate with humans under information asymmetry is challenging without effective communication in natural language. We introduce a shared-control game, where two players collectively control a token in alternating turns to achieve a common objective under incomplete information. We formulate a policy synthesis problem for an autonomous agent in this game with a human as the other player. To solve this problem, we propose a communication-based approach comprising a language module and a planning module. The language module translates natural language messages into and from a finite set of flags, a compact representation defined to capture player intents. The planning module leverages these flags to compute a policy using an asymmetric information-set Monte Carlo tree search with flag exchange algorithm we present. We evaluate the effectiveness of this approach in a testbed based on Gnomes at Night, a search-and-find maze board game. Results of human subject experiments show that communication narrows the information gap between players and enhances human-agent cooperation efficiency with fewer turns.

In ObjectGoal navigation (ObjectNav), agents must locate specific objects within unseen environments, requiring effective observation, prediction, and navigation capabilities. This study found that traditional methods looking only for prediction accuracy often compromise on computational efficiency. To address this, we introduce "Skip-SCAR," a modular framework that enhances efficiency by leveraging sparsity and adaptive skips. The SparseConv-Augmented ResNet (SCAR) at the core of our approach uses sparse and dense feature processing in parallel, optimizing both the computation and memory footprint. Our adaptive skip technique further reduces computational demands by selectively bypassing unnecessary semantic segmentation steps based on environmental constancy. Tested on the HM3D ObjectNav datasets, Skip-SCAR not only minimizes resource use but also sets new performance benchmarks, demonstrating a robust method for improving efficiency and accuracy in robotic navigation tasks.

Real-time path planning in outdoor environments still challenges modern robotic systems due to differences in terrain traversability, diverse obstacles, and the necessity for fast decision-making. Established approaches have primarily focused on geometric navigation solutions, which work well for structured geometric obstacles but have limitations regarding the semantic interpretation of different terrain types and their affordances. Moreover, these methods fail to identify traversable geometric occurrences, such as stairs. To overcome these issues, we introduce ViPlanner, a learned local path planning approach that generates local plans based on geometric and semantic information. The system is trained using the Imperative Learning paradigm, for which the network weights are optimized end-to-end based on the planning task objective. This optimization uses a differentiable formulation of a semantic costmap, which enables the planner to distinguish between the traversability of different terrains and accurately identify obstacles. The semantic information is represented in 30 classes using an RGB colorspace that can effectively encode the multiple levels of traversability. We show that the planner can adapt to diverse real-world environments without requiring any real-world training. In fact, the planner is trained purely in simulation, enabling a highly scalable training data generation. Experimental results demonstrate resistance to noise, zero-shot sim-to-real transfer, and a decrease of 38.02% in terms of traversability cost compared to purely geometric-based approaches. Code and models are made publicly available: //github.com/leggedrobotics/viplanner.

Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Inspired by the human cognitive system, attention is a mechanism that imitates the human cognitive awareness about specific information, amplifying critical details to focus more on the essential aspects of data. Deep learning has employed attention to boost performance for many applications. Interestingly, the same attention design can suit processing different data modalities and can easily be incorporated into large networks. Furthermore, multiple complementary attention mechanisms can be incorporated in one network. Hence, attention techniques have become extremely attractive. However, the literature lacks a comprehensive survey specific to attention techniques to guide researchers in employing attention in their deep models. Note that, besides being demanding in terms of training data and computational resources, transformers only cover a single category in self-attention out of the many categories available. We fill this gap and provide an in-depth survey of 50 attention techniques categorizing them by their most prominent features. We initiate our discussion by introducing the fundamental concepts behind the success of attention mechanism. Next, we furnish some essentials such as the strengths and limitations of each attention category, describe their fundamental building blocks, basic formulations with primary usage, and applications specifically for computer vision. We also discuss the challenges and open questions related to attention mechanism in general. Finally, we recommend possible future research directions for deep attention.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

北京阿比特科技有限公司