亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the variance of stochastic policy gradients (SPGs) with many action samples per state. We derive a many-actions optimality condition, which determines when many-actions SPG yields lower variance as compared to a single-action agent with proportionally extended trajectory. We propose Model-Based Many-Actions (MBMA), an approach leveraging dynamics models for many-actions sampling in the context of SPG. MBMA addresses issues associated with existing implementations of many-actions SPG and yields lower bias and comparable variance to SPG estimated from states in model-simulated rollouts. We find that MBMA bias and variance structure matches that predicted by theory. As a result, MBMA achieves improved sample efficiency and higher returns on a range of continuous action environments as compared to model-free, many-actions, and model-based on-policy SPG baselines.

相關內容

Learning agent behaviors from observational data has shown to improve our understanding of their decision-making processes, advancing our ability to explain their interactions with the environment and other agents. While multiple learning techniques have been proposed in the literature, there is one particular setting that has not been explored yet: multi agent systems where agent identities remain anonymous. For instance, in financial markets labeled data that identifies market participant strategies is typically proprietary, and only the anonymous state-action pairs that result from the interaction of multiple market participants are publicly available. As a result, sequences of agent actions are not observable, restricting the applicability of existing work. In this paper, we propose a Policy Clustering algorithm, called K-SHAP, that learns to group anonymous state-action pairs according to the agent policies. We frame the problem as an Imitation Learning (IL) task, and we learn a world-policy able to mimic all the agent behaviors upon different environmental states. We leverage the world-policy to explain each anonymous observation through an additive feature attribution method called SHAP (SHapley Additive exPlanations). Finally, by clustering the explanations we show that we are able to identify different agent policies and group observations accordingly. We evaluate our approach on simulated synthetic market data and a real-world financial dataset. We show that our proposal significantly and consistently outperforms the existing methods, identifying different agent strategies.

The widely used stochastic gradient methods for minimizing nonconvex composite objective functions require the Lipschitz smoothness of the differentiable part. But the requirement does not hold true for problem classes including quadratic inverse problems and training neural networks. To address this issue, we investigate a family of stochastic Bregman proximal gradient (SBPG) methods, which only require smooth adaptivity of the differentiable part. SBPG replaces the upper quadratic approximation used in SGD with the Bregman proximity measure, resulting in a better approximation model that captures the non-Lipschitz gradients of the nonconvex objective. We formulate the vanilla SBPG and establish its convergence properties under nonconvex setting without finite-sum structure. Experimental results on quadratic inverse problems testify the robustness of SBPG. Moreover, we propose a momentum-based version of SBPG (MSBPG) and prove it has improved convergence properties. We apply MSBPG to the training of deep neural networks with a polynomial kernel function, which ensures the smooth adaptivity of the loss function. Experimental results on representative benchmarks demonstrate the effectiveness and robustness of MSBPG in training neural networks. Since the additional computation cost of MSBPG compared with SGD is negligible in large-scale optimization, MSBPG can potentially be employed an universal open-source optimizer in the future.

Contrastive learning has gained popularity due to its robustness with good feature representation performance. However, cosine distance, the commonly used similarity metric in contrastive learning, is not well suited to represent the distance between two data points, especially on a nonlinear feature manifold. Inspired by manifold learning, we propose a novel extension of contrastive learning that leverages geodesic distance between features as a similarity metric for histopathology whole slide image classification. To reduce the computational overhead in manifold learning, we propose geodesic-distance-based feature clustering for efficient contrastive loss evaluation using prototypes without time-consuming pairwise feature similarity comparison. The efficacy of the proposed method is evaluated on two real-world histopathology image datasets. Results demonstrate that our method outperforms state-of-the-art cosine-distance-based contrastive learning methods.

Collecting and leveraging data with good coverage properties plays a crucial role in different aspects of reinforcement learning (RL), including reward-free exploration and offline learning. However, the notion of "good coverage" really depends on the application at hand, as data suitable for one context may not be so for another. In this paper, we formalize the problem of active coverage in episodic Markov decision processes (MDPs), where the goal is to interact with the environment so as to fulfill given sampling requirements. This framework is sufficiently flexible to specify any desired coverage property, making it applicable to any problem that involves online exploration. Our main contribution is an instance-dependent lower bound on the sample complexity of active coverage and a simple game-theoretic algorithm, CovGame, that nearly matches it. We then show that CovGame can be used as a building block to solve different PAC RL tasks. In particular, we obtain a simple algorithm for PAC reward-free exploration with an instance-dependent sample complexity that, in certain MDPs which are "easy to explore", is lower than the minimax one. By further coupling this exploration algorithm with a new technique to do implicit eliminations in policy space, we obtain a computationally-efficient algorithm for best-policy identification whose instance-dependent sample complexity scales with gaps between policy values.

In this paper we explore few-shot imitation learning for control problems, which involves learning to imitate a target policy by accessing a limited set of offline rollouts. This setting has been relatively under-explored despite its relevance to robotics and control applications. State-of-the-art methods developed to tackle few-shot imitation rely on meta-learning, which is expensive to train as it requires access to a distribution over tasks (rollouts from many target policies and variations of the base environment). Given this limitation we investigate an alternative approach, fine-tuning, a family of methods that pretrain on a single dataset and then fine-tune on unseen domain-specific data. Recent work has shown that fine-tuners outperform meta-learners in few-shot image classification tasks, especially when the data is out-of-domain. Here we evaluate to what extent this is true for control problems, proposing a simple yet effective baseline which relies on two stages: (i) training a base policy online via reinforcement learning (e.g. Soft Actor-Critic) on a single base environment, (ii) fine-tuning the base policy via behavioral cloning on a few offline rollouts of the target policy. Despite its simplicity this baseline is competitive with meta-learning methods on a variety of conditions and is able to imitate target policies trained on unseen variations of the original environment. Importantly, the proposed approach is practical and easy to implement, as it does not need any complex meta-training protocol. As a further contribution, we release an open source dataset called iMuJoCo (iMitation MuJoCo) consisting of 154 variants of popular OpenAI-Gym MuJoCo environments with associated pretrained target policies and rollouts, which can be used by the community to study few-shot imitation learning and offline reinforcement learning.

It is a big challenge to develop efficient models for identifying personalized drug targets (PDTs) from high-dimensional personalized genomic profile of individual patients. Recent structural network control principles have introduced a new approach to discover PDTs by selecting an optimal set of driver genes in personalized gene interaction network (PGIN). However, most of current methods only focus on controlling the system through a minimum driver-node set and ignore the existence of multiple candidate driver-node sets for therapeutic drug target identification in PGIN. Therefore, this paper proposed multi-objective optimization-based structural network control principles (MONCP) by considering minimum driver nodes and maximum prior-known drug-target information. To solve MONCP, a discrete multi-objective optimization problem is formulated with many constrained variables, and a novel evolutionary optimization model called LSCV-MCEA was developed by adapting a multi-tasking framework and a rankings-based fitness function method. With genomics data of patients with breast or lung cancer from The Cancer Genome Atlas database, the effectiveness of LSCV-MCEA was validated. The experimental results indicated that compared with other advanced methods, LSCV-MCEA can more effectively identify PDTs with the highest Area Under the Curve score for predicting clinically annotated combinatorial drugs. Meanwhile, LSCV-MCEA can more effectively solve MONCP than other evolutionary optimization methods in terms of algorithm convergence and diversity. Particularly, LSCV-MCEA can efficiently detect disease signals for individual patients with BRCA cancer. The study results show that multi-objective optimization can solve structural network control principles effectively and offer a new perspective for understanding tumor heterogeneity in cancer precision medicine.

The policy gradient theorem gives a convenient form of the policy gradient in terms of three factors: an action value, a gradient of the action likelihood, and a state distribution involving discounting called the \emph{discounted stationary distribution}. But commonly used on-policy methods based on the policy gradient theorem ignores the discount factor in the state distribution, which is technically incorrect and may even cause degenerate learning behavior in some environments. An existing solution corrects this discrepancy by using $\gamma^t$ as a factor in the gradient estimate. However, this solution is not widely adopted and does not work well in tasks where the later states are similar to earlier states. We introduce a novel distribution correction to account for the discounted stationary distribution that can be plugged into many existing gradient estimators. Our correction circumvents the performance degradation associated with the $\gamma^t$ correction with a lower variance. Importantly, compared to the uncorrected estimators, our algorithm provides improved state emphasis to evade suboptimal policies in certain environments and consistently matches or exceeds the original performance on several OpenAI gym and DeepMind suite benchmarks.

Offline reinforcement learning (RL) aims to learn a policy using only pre-collected and fixed data. Although avoiding the time-consuming online interactions in RL, it poses challenges for out-of-distribution (OOD) state actions and often suffers from data inefficiency for training. Despite many efforts being devoted to addressing OOD state actions, the latter (data inefficiency) receives little attention in offline RL. To address this, this paper proposes the cross-domain offline RL, which assumes offline data incorporate additional source-domain data from varying transition dynamics (environments), and expects it to contribute to the offline data efficiency. To do so, we identify a new challenge of OOD transition dynamics, beyond the common OOD state actions issue, when utilizing cross-domain offline data. Then, we propose our method BOSA, which employs two support-constrained objectives to address the above OOD issues. Through extensive experiments in the cross-domain offline RL setting, we demonstrate BOSA can greatly improve offline data efficiency: using only 10\% of the target data, BOSA could achieve {74.4\%} of the SOTA offline RL performance that uses 100\% of the target data. Additionally, we also show BOSA can be effortlessly plugged into model-based offline RL and noising data augmentation techniques (used for generating source-domain data), which naturally avoids the potential dynamics mismatch between target-domain data and newly generated source-domain data.

Neural networks have shown tremendous growth in recent years to solve numerous problems. Various types of neural networks have been introduced to deal with different types of problems. However, the main goal of any neural network is to transform the non-linearly separable input data into more linearly separable abstract features using a hierarchy of layers. These layers are combinations of linear and nonlinear functions. The most popular and common non-linearity layers are activation functions (AFs), such as Logistic Sigmoid, Tanh, ReLU, ELU, Swish and Mish. In this paper, a comprehensive overview and survey is presented for AFs in neural networks for deep learning. Different classes of AFs such as Logistic Sigmoid and Tanh based, ReLU based, ELU based, and Learning based are covered. Several characteristics of AFs such as output range, monotonicity, and smoothness are also pointed out. A performance comparison is also performed among 18 state-of-the-art AFs with different networks on different types of data. The insights of AFs are presented to benefit the researchers for doing further research and practitioners to select among different choices. The code used for experimental comparison is released at: \url{//github.com/shivram1987/ActivationFunctions}.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司