亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Online education has gained an increasing importance over the last decade for providing affordable high-quality education to students worldwide. This has been further magnified during the global pandemic as more students switched to study online. The majority of online education tasks, e.g., course recommendation, exercise recommendation, or automated evaluation, depends on tracking students' knowledge progress. This is known as the \emph{Knowledge Tracing} problem in the literature. Addressing this problem requires collecting student evaluation data that can reflect their knowledge evolution over time. In this paper, we propose a new knowledge tracing dataset named Database Exercises for Knowledge Tracing (DBE-KT22) that is collected from an online student exercise system in a course taught at the Australian National University in Australia. We discuss the characteristics of the DBE-KT22 dataset and contrast it with the existing datasets in the knowledge tracing literature. Our dataset is available for public access through the Australian Data Archive platform.

相關內容

通過學習、實踐或探索所獲得(de)的認識、判斷或技能。

Recently, causal inference has attracted increasing attention from researchers of recommender systems (RS), which analyzes the relationship between a cause and its effect and has a wide range of real-world applications in multiple fields. Causal inference can model the causality in recommender systems like confounding effects and deal with counterfactual problems such as offline policy evaluation and data augmentation. Although there are already some valuable surveys on causal recommendations, these surveys introduce approaches in a relatively isolated way and lack theoretical analysis of existing methods. Due to the unfamiliarity with causality to RS researchers, it is both necessary and challenging to comprehensively review the relevant studies from the perspective of causal theory, which might be instructive for the readers to propose new approaches in practice. This survey attempts to provide a systematic review of up-to-date papers in this area from a theoretical standpoint. Firstly, we introduce the fundamental concepts of causal inference as the basis of the following review. Then we propose a new taxonomy from the perspective of causal techniques and further discuss technical details about how existing methods apply causal inference to address specific recommender issues. Finally, we highlight some promising directions for future research in this field.

In education applications, knowledge tracing refers to the problem of estimating students' time-varying concept/skill mastery level from their past responses to questions and predicting their future performance. One key limitation of most existing knowledge tracing methods is that they treat student responses to questions as binary-valued, i.e., whether they are correct or incorrect. Response correctness analysis/prediction ignores important information on student knowledge contained in the exact content of the responses, especially for open-ended questions. In this paper, we conduct the first exploration into open-ended knowledge tracing (OKT) by studying the new task of predicting students' exact open-ended responses to questions. Our work is grounded in the domain of computer science education with programming questions. We develop an initial solution to the OKT problem, a student knowledge-guided code generation approach, that combines program synthesis methods using language models with student knowledge tracing methods. We also conduct a series of quantitative and qualitative experiments on a real-world student code dataset to validate OKT and demonstrate its promise in educational applications.

Structured knowledge bases (KBs) are a foundation of many intelligent applications, yet are notoriously incomplete. Language models (LMs) have recently been proposed for unsupervised knowledge base completion (KBC), yet, despite encouraging initial results, questions regarding their suitability remain open. Existing evaluations often fall short because they only evaluate on popular subjects, or sample already existing facts from KBs. In this work, we introduce a novel, more challenging benchmark dataset, and a methodology tailored for a realistic assessment of the KBC potential of LMs. For automated assessment, we curate a dataset called WD-KNOWN, which provides an unbiased random sample of Wikidata, containing over 3.9 million facts. In a second step, we perform a human evaluation on predictions that are not yet in the KB, as only this provides real insights into the added value over existing KBs. Our key finding is that biases in dataset conception of previous benchmarks lead to a systematic overestimate of LM performance for KBC. However, our results also reveal strong areas of LMs. We could, for example, perform a significant completion of Wikidata on the relations nativeLanguage, by a factor of ~21 (from 260k to 5.8M) at 82% precision, usedLanguage, by a factor of ~2.1 (from 2.1M to 6.6M) at 82% precision, and citizenOf by a factor of ~0.3 (from 4.2M to 5.3M) at 90% precision. Moreover, we find that LMs possess surprisingly strong generalization capabilities: even on relations where most facts were not directly observed in LM training, prediction quality can be high.

With the increasing popularity of accelerator technologies (e.g., GPUs and TPUs) and the emergence of domain-specific computing via ASICs and FPGA, the matter of heterogeneity and understanding its ramifications on the performance has become more critical than ever before. However, it is challenging to effectively educate students about the potential impacts of heterogeneity on the performance of distributed systems; and on the logic of resource allocation methods to efficiently utilize the resources. Making use of the real infrastructure for benchmarking the performance of heterogeneous machines, for different applications, with respect to different objectives, and under various workload intensities is cost- and time-prohibitive. To reinforce the quality of learning about various dimensions of heterogeneity, and to decrease the widening gap in education, we develop an open-source simulation tool, called E2C, that can help students researchers to study any type of heterogeneous (or homogeneous) computing system and measure its performance under various configurations. E2C is equipped with an intuitive graphical user interface (GUI) that enables its users to easily examine system-level solutions (scheduling, load balancing, scalability, etc.) in a controlled environment within a short time. E2C is a discrete event simulator that offers the following features: (i) simulating a heterogeneous computing system; (ii) implementing a newly developed scheduling method and plugging it into the system, (iii) measuring energy consumption and other output-related metrics; and (iv) powerful visual aspects to ease the learning curve for students. We used E2C as an assignment in the Distributed and Cloud Computing course. Our anonymous survey study indicates that students rated E2C with the score of 8.7 out of 10 for its usefulness in understanding the concepts of scheduling in heterogeneous computing.

Data-driven algorithms are only as good as the data they work with, while data sets, especially social data, often fail to represent minorities adequately. Representation Bias in data can happen due to various reasons ranging from historical discrimination to selection and sampling biases in the data acquisition and preparation methods. Given that "bias in, bias out", one cannot expect AI-based solutions to have equitable outcomes for societal applications, without addressing issues such as representation bias. While there has been extensive study of fairness in machine learning models, including several review papers, bias in the data has been less studied. This paper reviews the literature on identifying and resolving representation bias as a feature of a data set, independent of how consumed later. The scope of this survey is bounded to structured (tabular) and unstructured (e.g., image, text, graph) data. It presents taxonomies to categorize the studied techniques based on multiple design dimensions and provides a side-by-side comparison of their properties. There is still a long way to fully address representation bias issues in data. The authors hope that this survey motivates researchers to approach these challenges in the future by observing existing work within their respective domains.

Since the 1950s, machine translation (MT) has become one of the important tasks of AI and development, and has experienced several different periods and stages of development, including rule-based methods, statistical methods, and recently proposed neural network-based learning methods. Accompanying these staged leaps is the evaluation research and development of MT, especially the important role of evaluation methods in statistical translation and neural translation research. The evaluation task of MT is not only to evaluate the quality of machine translation, but also to give timely feedback to machine translation researchers on the problems existing in machine translation itself, how to improve and how to optimise. In some practical application fields, such as in the absence of reference translations, the quality estimation of machine translation plays an important role as an indicator to reveal the credibility of automatically translated target languages. This report mainly includes the following contents: a brief history of machine translation evaluation (MTE), the classification of research methods on MTE, and the the cutting-edge progress, including human evaluation, automatic evaluation, and evaluation of evaluation methods (meta-evaluation). Manual evaluation and automatic evaluation include reference-translation based and reference-translation independent participation; automatic evaluation methods include traditional n-gram string matching, models applying syntax and semantics, and deep learning models; evaluation of evaluation methods includes estimating the credibility of human evaluations, the reliability of the automatic evaluation, the reliability of the test set, etc. Advances in cutting-edge evaluation methods include task-based evaluation, using pre-trained language models based on big data, and lightweight optimisation models using distillation techniques.

In many visual systems, visual tracking often bases on RGB image sequences, in which some targets are invalid in low-light conditions, and tracking performance is thus affected significantly. Introducing other modalities such as depth and infrared data is an effective way to handle imaging limitations of individual sources, but multi-modal imaging platforms usually require elaborate designs and cannot be applied in many real-world applications at present. Near-infrared (NIR) imaging becomes an essential part of many surveillance cameras, whose imaging is switchable between RGB and NIR based on the light intensity. These two modalities are heterogeneous with very different visual properties and thus bring big challenges for visual tracking. However, existing works have not studied this challenging problem. In this work, we address the cross-modal object tracking problem and contribute a new video dataset, including 654 cross-modal image sequences with over 481K frames in total, and the average video length is more than 735 frames. To promote the research and development of cross-modal object tracking, we propose a new algorithm, which learns the modality-aware target representation to mitigate the appearance gap between RGB and NIR modalities in the tracking process. It is plug-and-play and could thus be flexibly embedded into different tracking frameworks. Extensive experiments on the dataset are conducted, and we demonstrate the effectiveness of the proposed algorithm in two representative tracking frameworks against 17 state-of-the-art tracking methods. We will release the dataset for free academic usage, dataset download link and code will be released soon.

Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.

Data in Knowledge Graphs often represents part of the current state of the real world. Thus, to stay up-to-date the graph data needs to be updated frequently. To utilize information from Knowledge Graphs, many state-of-the-art machine learning approaches use embedding techniques. These techniques typically compute an embedding, i.e., vector representations of the nodes as input for the main machine learning algorithm. If a graph update occurs later on -- specifically when nodes are added or removed -- the training has to be done all over again. This is undesirable, because of the time it takes and also because downstream models which were trained with these embeddings have to be retrained if they change significantly. In this paper, we investigate embedding updates that do not require full retraining and evaluate them in combination with various embedding models on real dynamic Knowledge Graphs covering multiple use cases. We study approaches that place newly appearing nodes optimally according to local information, but notice that this does not work well. However, we find that if we continue the training of the old embedding, interleaved with epochs during which we only optimize for the added and removed parts, we obtain good results in terms of typical metrics used in link prediction. This performance is obtained much faster than with a complete retraining and hence makes it possible to maintain embeddings for dynamic Knowledge Graphs.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

北京阿比特科技有限公司