亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a decentralized multi-agent trajectory planning (MATP) algorithm that guarantees to generate a safe, deadlock-free trajectory in an obstacle-rich environment under a limited communication range. The proposed algorithm utilizes a grid-based multi-agent path planning (MAPP) algorithm for deadlock resolution, and we introduce the subgoal optimization method to make the agent converge to the waypoint generated from the MAPP without deadlock. In addition, the proposed algorithm ensures the feasibility of the optimization problem and collision avoidance by adopting a linear safe corridor (LSC). We verify that the proposed algorithm does not cause a deadlock in both random forests and dense mazes regardless of communication range, and it outperforms our previous work in flight time and distance. We validate the proposed algorithm through a hardware demonstration with ten quadrotors.

相關內容

Every day, railways experience disturbances and disruptions, both on the network and the fleet side, that affect the stability of rail traffic. Induced delays propagate through the network, which leads to a mismatch in demand and offer for goods and passengers, and, in turn, to a loss in service quality. In these cases, it is the duty of human traffic controllers, the so-called dispatchers, to do their best to minimize the impact on traffic. However, dispatchers inevitably have a limited depth of perception of the knock-on effect of their decisions, particularly how they affect areas of the network that are outside their direct control. In recent years, much work in Decision Science has been devoted to developing methods to solve the problem automatically and support the dispatchers in this challenging task. This paper investigates Machine Learning-based methods for tackling this problem, proposing two different Deep Q-Learning methods(Decentralized and Centralized). Numerical results show the superiority of these techniques with respect to the classical linear Q-Learning based on matrices. Moreover, the Centralized approach is compared with a MILP formulation showing interesting results. The experiments are inspired by data provided by a U.S. Class 1 railroad.

Marine waves significantly disturb the unmanned surface vehicle (USV) motion. An unmanned aerial vehicle (UAV) can hardly land on a USV that undergoes irregular motion. An oversized landing platform is usually necessary to guarantee the landing safety, which limits the number of UAVs that can be carried. We propose a landing system assisted by tether and robot manipulation. The system can land multiple UAVs without increasing the USV's size. An MPC controller stabilizes the end-effector and tracks the UAVs, and an adaptive estimator addresses the disturbance caused by the base motion. The working strategy of the system is designed to plan the motion of each device. We have validated the manipulator controller through simulations and well-controlled indoor experiments. During the field tests, the proposed system caught and placed the UAVs when the disturbed USV roll range was approximately 12 degrees.

With the increasing demand for large-scale training of machine learning models, fully decentralized optimization methods have recently been advocated as alternatives to the popular parameter server framework. In this paradigm, each worker maintains a local estimate of the optimal parameter vector, and iteratively updates it by waiting and averaging all estimates obtained from its neighbors, and then corrects it on the basis of its local dataset. However, the synchronization phase is sensitive to stragglers. An efficient way to mitigate this effect is to consider asynchronous updates, where each worker computes stochastic gradients and communicates with other workers at its own pace. Unfortunately, fully asynchronous updates suffer from staleness of the stragglers' parameters. To address these limitations, we propose a fully decentralized algorithm DSGD-AAU with adaptive asynchronous updates via adaptively determining the number of neighbor workers for each worker to communicate with. We show that DSGD-AAU achieves a linear speedup for convergence (i.e., convergence performance increases linearly with respect to the number of workers). Experimental results on a suite of datasets and deep neural network models are provided to verify our theoretical results.

Target tracking with a mobile robot has numerous significant applications in both civilian and military. Practical challenges such as limited field-of-view, obstacle occlusion, and system uncertainty may all adversely affect tracking performance, yet few existing works can simultaneously tackle these limitations. To bridge the gap, we introduce the concept of belief-space probability of detection (BPOD) to measure the predictive visibility of the target under stochastic robot and target states. An Extended Kalman Filter variant incorporating BPOD is developed to predict target belief state under uncertain visibility within the planning horizon. Furthermore, we propose a computationally efficient algorithm to uniformly calculate both BPOD and the chance-constrained collision risk by utilizing linearized signed distance function (SDF), and then design a two-stage strategy for lightweight calculation of SDF in sequential convex programming. Building upon these treatments, we develop a real-time, non-myopic trajectory planner for visibility-aware and safe target tracking in the presence of system uncertainty. The effectiveness of the proposed approach is verified by both simulations and real-world experiments.

In dynamic mechanism design literature, one critical aspect has been typically ignored-the agents' periodic participation, which they can adapt and plan strategically. We propose a framework for dynamic principal-multiagent problems, augmenting the classic model by incorporating agents' periodic coupled decisions on participation and regular action selections. The principal faces adverse selection and designs a mechanism comprising a task policy profile (defining evolving agent action menus), a coupling policy profile (affecting agent utilities), and an off-switch function profile (assigning rewards or penalties upon agent withdrawal). Firstly, we introduce payoff-flow conservation-a sufficient condition to ensure dynamic incentive compatibility for regular actions. Secondly, we formulate a unique process, persistence transformation, which integrates task policy's implicit functions, enabling a closed-form off-switch function derivation, hence securing sufficient conditions for agents' coupled decisions' incentive compatibility, aligning with the principal's preferences. Thirdly, we go beyond the traditional envelope theorem by presenting a necessary condition for incentive compatibility, leveraging the coupled optimality of principal-desired actions. This approach helps explicitly formulate both the coupling and off-switch functions. Finally, we establish envelope-like conditions exclusively on the task policies, facilitating the application of the first-order approach.

The design of autonomous agents that can interact effectively with other agents without prior coordination is a core problem in multi-agent systems. Type-based reasoning methods achieve this by maintaining a belief over a set of potential behaviours for the other agents. However, current methods are limited in that they assume full observability of the state and actions of the other agent or do not scale efficiently to larger problems with longer planning horizons. Addressing these limitations, we propose Partially Observable Type-based Meta Monte-Carlo Planning (POTMMCP) - an online Monte-Carlo Tree Search based planning method for type-based reasoning in large partially observable environments. POTMMCP incorporates a novel meta-policy for guiding search and evaluating beliefs, allowing it to search more effectively to longer horizons using less planning time. We show that our method converges to the optimal solution in the limit and empirically demonstrate that it effectively adapts online to diverse sets of other agents across a range of environments. Comparisons with the state-of-the art method on problems with up to $10^{14}$ states and $10^8$ observations indicate that POTMMCP is able to compute better solutions significantly faster.

Accurate, self-consistent bathymetric maps are needed to monitor changes in subsea environments and infrastructure. These maps are increasingly collected by underwater vehicles, and mapping requires an accurate vehicle navigation solution. Commercial off-the-shelf (COTS) navigation solutions for underwater vehicles often rely on external acoustic sensors for localization, however survey-grade acoustic sensors are expensive to deploy and limit the range of the vehicle. Techniques from the field of simultaneous localization and mapping, particularly loop closures, can improve the quality of the navigation solution over dead-reckoning, but are difficult to integrate into COTS navigation systems. This work presents a method to improve the self-consistency of bathymetric maps by smoothly integrating loop-closure measurements into the state estimate produced by a commercial subsea navigation system. Integration is done using a white-noise-on-acceleration motion prior, without access to raw sensor measurements or proprietary models. Improvements in map self-consistency are shown for both simulated and experimental datasets, including a 3D scan of an underwater shipwreck in Wiarton, Ontario, Canada.

Sneakers were designated as the most counterfeited fashion item online, with three times more risk in a trade than any other fashion purchase. As the market expands, the current sneaker scene displays several vulnerabilities and trust flaws, mostly related to the legitimacy of assets or actors. In this paper, we investigate various blockchain-based mechanisms to address these large-scale trust issues. We argue that (i) pre-certified and tracked assets through the use of non-fungible tokens can ensure the genuine nature of an asset and authenticate its owner more effectively during peer-to-peer trading across a marketplace; (ii) a game-theoretic-based system with economic incentives for participating users can greatly reduce the rate of online fraud and address missed delivery deadlines; (iii) a decentralized dispute resolution system biased in favour of an honest party can solve potential conflicts more reliably.

We study a decentralized multi-agent multi-armed bandit problem in which multiple clients are connected by time dependent random graphs provided by an environment. The reward distributions of each arm vary across clients and rewards are generated independently over time by an environment based on distributions that include both sub-exponential and sub-gaussian distributions. Each client pulls an arm and communicates with neighbors based on the graph provided by the environment. The goal is to minimize the overall regret of the entire system through collaborations. To this end, we introduce a novel algorithmic framework, which first provides robust simulation methods for generating random graphs using rapidly mixing Markov chains or the random graph model, and then combines an averaging-based consensus approach with a newly proposed weighting technique and the upper confidence bound to deliver a UCB-type solution. Our algorithms account for the randomness in the graphs, removing the conventional doubly stochasticity assumption, and only require the knowledge of the number of clients at initialization. We derive optimal instance-dependent regret upper bounds of order $\log{T}$ in both sub-gaussian and sub-exponential environments, and a nearly optimal mean-gap independent regret upper bound of order $\sqrt{T}\log T$ up to a $\log T$ factor. Importantly, our regret bounds hold with high probability and capture graph randomness, whereas prior works consider expected regret under assumptions and require more stringent reward distributions.

Accurate trajectory prediction of nearby vehicles is crucial for the safe motion planning of automated vehicles in dynamic driving scenarios such as highway merging. Existing methods cannot initiate prediction for a vehicle unless observed for a fixed duration of two or more seconds. This prevents a fast reaction by the ego vehicle to vehicles that enter its perception range, thus creating safety concerns. Therefore, this paper proposes a novel transformer-based trajectory prediction approach, specifically trained to handle any observation length larger than one frame. We perform a comprehensive evaluation of the proposed method using two large-scale highway trajectory datasets, namely the highD and exiD. In addition, we study the impact of the proposed prediction approach on motion planning and control tasks using extensive merging scenarios from the exiD dataset. To the best of our knowledge, this marks the first instance where such a large-scale highway merging dataset has been employed for this purpose. The results demonstrate that the prediction model achieves state-of-the-art performance on highD dataset and maintains lower prediction error w.r.t. the constant velocity across all observation lengths in exiD. Moreover, it significantly enhances safety, comfort, and efficiency in dense traffic scenarios, as compared to the constant velocity model.

北京阿比特科技有限公司