Target tracking with a mobile robot has numerous significant applications in both civilian and military. Practical challenges such as limited field-of-view, obstacle occlusion, and system uncertainty may all adversely affect tracking performance, yet few existing works can simultaneously tackle these limitations. To bridge the gap, we introduce the concept of belief-space probability of detection (BPOD) to measure the predictive visibility of the target under stochastic robot and target states. An Extended Kalman Filter variant incorporating BPOD is developed to predict target belief state under uncertain visibility within the planning horizon. Furthermore, we propose a computationally efficient algorithm to uniformly calculate both BPOD and the chance-constrained collision risk by utilizing linearized signed distance function (SDF), and then design a two-stage strategy for lightweight calculation of SDF in sequential convex programming. Building upon these treatments, we develop a real-time, non-myopic trajectory planner for visibility-aware and safe target tracking in the presence of system uncertainty. The effectiveness of the proposed approach is verified by both simulations and real-world experiments.
The vast increase of Internet of Things (IoT) technologies and the ever-evolving attack vectors have increased cyber-security risks dramatically. A common approach to implementing AI-based Intrusion Detection systems (IDSs) in distributed IoT systems is in a centralised manner. However, this approach may violate data privacy and prohibit IDS scalability. Therefore, intrusion detection solutions in IoT ecosystems need to move towards a decentralised direction. Federated Learning (FL) has attracted significant interest in recent years due to its ability to perform collaborative learning while preserving data confidentiality and locality. Nevertheless, most FL-based IDS for IoT systems are designed under unrealistic data distribution conditions. To that end, we design an experiment representative of the real world and evaluate the performance of an FL-based IDS. For our experiments, we rely on TON-IoT, a realistic IoT network traffic dataset, associating each IP address with a single FL client. Additionally, we explore pre-training and investigate various aggregation methods to mitigate the impact of data heterogeneity. Lastly, we benchmark our approach against a centralised solution. The comparison shows that the heterogeneous nature of the data has a considerable negative impact on the model's performance when trained in a distributed manner. However, in the case of a pre-trained initial global FL model, we demonstrate a performance improvement of over 20% (F1-score) compared to a randomly initiated global model.
Recommender Systems are built to retrieve relevant items to satisfy users' information needs. The candidate corpus usually consists of a finite set of items that are ready to be served, such as videos, products, or articles. With recent advances in Generative AI such as GPT and Diffusion models, a new form of recommendation task is yet to be explored where items are to be created by generative models with personalized prompts. Taking image generation as an example, with a single prompt from the user and access to a generative model, it is possible to generate hundreds of new images in a few minutes. How shall we attain personalization in the presence of "infinite" items? In this preliminary study, we propose a two-stage framework, namely Prompt-Model Retrieval and Generated Item Ranking, to approach this new task formulation. We release GEMRec-18K, a prompt-model interaction dataset with 18K images generated by 200 publicly-available generative models paired with a diverse set of 90 textual prompts. Our findings demonstrate the promise of generative model recommendation as a novel personalization problem and the limitations of existing evaluation metrics. We highlight future directions for the RecSys community to advance towards generative recommender systems. Our code and dataset are available at //github.com/MAPS-research/GEMRec.
In applications such as search and rescue or disaster relief, heterogeneous multi-robot systems (MRS) can provide significant advantages for complex objectives that require a suite of capabilities. However, within these application spaces, communication is often unreliable, causing inefficiencies or outright failures to arise in most MRS algorithms. Many researchers tackle this problem by requiring all robots to either maintain communication using proximity constraints or assuming that all robots will execute a predetermined plan over long periods of disconnection. The latter method allows for higher levels of efficiency in a MRS, but failures and environmental uncertainties can have cascading effects across the system, especially when a mission objective is complex or time-sensitive. To solve this, we propose an epistemic planning framework that allows robots to reason about the system state, leverage heterogeneous system makeups, and optimize information dissemination to disconnected neighbors. Dynamic epistemic logic formalizes the propagation of belief states, and epistemic task allocation and gossip is accomplished via a mixed integer program using the belief states for utility predictions and planning. The proposed framework is validated using simulations and experiments with heterogeneous vehicles.
Search query classification, as an effective way to understand user intents, is of great importance in real-world online ads systems. To ensure a lower latency, a shallow model (e.g. FastText) is widely used for efficient online inference. However, the representation ability of the FastText model is insufficient, resulting in poor classification performance, especially on some low-frequency queries and tailed categories. Using a deeper and more complex model (e.g. BERT) is an effective solution, but it will cause a higher online inference latency and more expensive computing costs. Thus, how to juggle both inference efficiency and classification performance is obviously of great practical importance. To overcome this challenge, in this paper, we propose knowledge condensation (KC), a simple yet effective knowledge distillation framework to boost the classification performance of the online FastText model under strict low latency constraints. Specifically, we propose to train an offline BERT model to retrieve more potentially relevant data. Benefiting from its powerful semantic representation, more relevant labels not exposed in the historical data will be added into the training set for better FastText model training. Moreover, a novel distribution-diverse multi-expert learning strategy is proposed to further improve the mining ability of relevant data. By training multiple BERT models from different data distributions, it can respectively perform better at high, middle, and low-frequency search queries. The model ensemble from multi-distribution makes its retrieval ability more powerful. We have deployed two versions of this framework in JD search, and both offline experiments and online A/B testing from multiple datasets have validated the effectiveness of the proposed approach.
Two-sided platforms rely on their recommendation algorithms to help visitors successfully find a match. However, on platforms such as VolunteerMatch (VM) -- which has facilitated millions of connections between volunteers and nonprofits -- a sizable fraction of website traffic arrives directly to a nonprofit's volunteering page via an external link, thus bypassing the platform's recommendation algorithm. We study how such platforms should account for this external traffic in the design of their recommendation algorithms, given the goal of maximizing successful matches. We model the platform's problem as a special case of online matching, where (using VM terminology) volunteers arrive sequentially and probabilistically match with one opportunity, each of which has finite need for volunteers. In our framework, external traffic is interested only in their targeted opportunity; by contrast, internal traffic may be interested in many opportunities, and the platform's online algorithm selects which opportunity to recommend. In evaluating different algorithms, we parameterize the competitive ratio based on the amount of external traffic. After demonstrating the shortcomings of a commonly-used algorithm that is optimal in the absence of external traffic, we propose a new algorithm -- Adaptive Capacity (AC) -- which accounts for matches differently based on whether they originate from internal or external traffic. We provide a lower bound on AC's competitive ratio that is increasing in the amount of external traffic and that is close to (and, in some regimes, exactly matches) the parameterized upper bound we establish on the competitive ratio of any online algorithm. We complement our theoretical results with a numerical study motivated by VM data that demonstrates the strong performance of AC and furthers our understanding of the difference between AC and other commonly-used algorithms.
Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.
Data transmission between two or more digital devices in industry and government demands secure and agile technology. Digital information distribution often requires deployment of Internet of Things (IoT) devices and Data Fusion techniques which have also gained popularity in both, civilian and military environments, such as, emergence of Smart Cities and Internet of Battlefield Things (IoBT). This usually requires capturing and consolidating data from multiple sources. Because datasets do not necessarily originate from identical sensors, fused data typically results in a complex Big Data problem. Due to potentially sensitive nature of IoT datasets, Blockchain technology is used to facilitate secure sharing of IoT datasets, which allows digital information to be distributed, but not copied. However, blockchain has several limitations related to complexity, scalability, and excessive energy consumption. We propose an approach to hide information (sensor signal) by transforming it to an image or an audio signal. In one of the latest attempts to the military modernization, we investigate sensor fusion approach by investigating the challenges of enabling an intelligent identification and detection operation and demonstrates the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application for specific hand gesture alert system from wearable devices.
We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast
Emotion plays an important role in detecting fake news online. When leveraging emotional signals, the existing methods focus on exploiting the emotions of news contents that conveyed by the publishers (i.e., publisher emotion). However, fake news is always fabricated to evoke high-arousal or activating emotions of people to spread like a virus, so the emotions of news comments that aroused by the crowd (i.e., social emotion) can not be ignored. Furthermore, it needs to be explored whether there exists a relationship between publisher emotion and social emotion (i.e., dual emotion), and how the dual emotion appears in fake news. In the paper, we propose Dual Emotion Features to mine dual emotion and the relationship between them for fake news detection. And we design a universal paradigm to plug it into any existing detectors as an enhancement. Experimental results on three real-world datasets indicate the effectiveness of the proposed features.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.