亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

AI's rapid growth has been felt acutely by scholarly venues, leading to growing pains within the peer review process. These challenges largely center on the inability of specific subareas to identify and evaluate work that is appropriate according to criteria relevant to each subcommunity as determined by stakeholders of that subarea. We set forth a proposal that re-focuses efforts within these subcommunities through a decentralization of the reviewing and publication process. Through this re-centering effort, we hope to encourage each subarea to confront the issues specific to their process of academic publication and incentivization. This model has historically been successful for several subcommunities in AI, and we highlight those instances as examples for how the broader field can continue to evolve despite its continually growing size.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

Despite research advocating the Internet of Things (IoT) as an effective in-office monitoring system, little research has presented societal and climate centric discussions. Whereas the United Nations (UN) and other development agencies concerned with climate impact, are advocating transformative actions towards smart cities, very little research in the IoT domain analyzes the advantages of IoT in achieving sustainable development goals (SDGs) to fill this gap. In this study, a smart office (SO) was developed in a Cisco packet tracer. We then presented the SO through the lens of SDGs. We suggest that SOs support targets mentioned in Goal 6, 7, 8, 9, 11 and 12 of the SDGs. This research is crucial - both for developing and developed economies, as we move toward industrialization, while ignoring the adverse impacts of industrialization. This work is expected to provide a pathway with technological innovation toward a more sustainable world for IT practitioners, governments and development agencies.

Given is a 1.5D terrain $\mathcal{T}$, i.e., an $x$-monotone polygonal chain in $\mathbb{R}^2$. For a given $2\le k\le n$, our objective is to approximate the largest area or perimeter convex polygon of exactly or at most $k$ vertices inside $\mathcal{T}$. For a constant $k>3$, we design an FPTAS that efficiently approximates the largest convex polygons with at most $k$ vertices, within a factor $(1-\epsilon)$. For the case where $k=2$, we design an $O(n)$ time exact algorithm for computing the longest line segment in $\mathcal{T}$, and for $k=3$, we design an $O(n \log n)$ time exact algorithm for computing the largest-perimeter triangle that lies within $\mathcal{T}$.

As sustainability becomes an increasing priority throughout global society, academic and research institutions are assessed on their contribution to relevant research publications. This study compares four methods of identifying research publications related to United Nations Sustainable Development Goal 13: climate action. The four methods, Elsevier, STRINGS, SIRIS, and Dimensions have each developed search strings with the help of subject matter experts which are then enhanced through distinct methods to produce a final set of publications. Our analysis showed that the methods produced comparable quantities of publications but with little overlap between them. We visualised some difference in topic focus between the methods and drew links with the search strategies used. Differences between publications retrieved are likely to come from subjective interpretation of the goals, keyword selection, operationalising search strategies, AI enhancements, and selection of bibliographic database. Many of these are driven by human choices and the compound effect of the differences is likely to have resulted in non-overlapping publication sets. Each of the elements warrants deeper investigation to understand their role in identifying SDG-related research. Currently, it premature to rely on any one method to assess progress against the goal.

When individuals arrive to receive help from mental health providers, they do not always have well specified and well established goals. It is the mental health providers responsibility to work collaboratively with patients to clarify their goals in the therapy sessions as well as life in general through clinical interviews, diagnostic assessments, and thorough observations. However, recognizing individuals important life goals is not always straightforward. Here we introduce a novel method that gauges a patient important goal pursuits from their relative sensitivity to goal related words. Past research has shown that a person active goal pursuits cause them to be more sensitive to the presence of goal related stimuli in the environment being able to consciously report those stimuli when others cannot see them. By presenting words related to a variety of different life goal pursuits very quickly for 50 msec or less, the patient would be expected to notice and be aware of words related to their strongest motivations but not the other goal related words. These may or may not be among the goals they have identified in therapy sessions, and the ones not previously identified can be fertile grounds for further discussion and exploration in subsequent therapy sessions. Results from eight patient volunteers are described and discussed in terms of the potential utility of this supplemental personal therapy aid.

Training machines to understand natural language and interact with humans is an elusive and essential task of artificial intelligence. A diversity of dialogue systems has been designed with the rapid development of deep learning techniques, especially the recent pre-trained language models (PrLMs). Among these studies, the fundamental yet challenging type of task is dialogue comprehension whose role is to teach the machines to read and comprehend the dialogue context before responding. In this paper, we review the previous methods from the technical perspective of dialogue modeling for the dialogue comprehension task. We summarize the characteristics and challenges of dialogue comprehension in contrast to plain-text reading comprehension. Then, we discuss three typical patterns of dialogue modeling. In addition, we categorize dialogue-related pre-training techniques which are employed to enhance PrLMs in dialogue scenarios. Finally, we highlight the technical advances in recent years and point out the lessons from the empirical analysis and the prospects towards a new frontier of researches.

The growing energy and performance costs of deep learning have driven the community to reduce the size of neural networks by selectively pruning components. Similarly to their biological counterparts, sparse networks generalize just as well, if not better than, the original dense networks. Sparsity can reduce the memory footprint of regular networks to fit mobile devices, as well as shorten training time for ever growing networks. In this paper, we survey prior work on sparsity in deep learning and provide an extensive tutorial of sparsification for both inference and training. We describe approaches to remove and add elements of neural networks, different training strategies to achieve model sparsity, and mechanisms to exploit sparsity in practice. Our work distills ideas from more than 300 research papers and provides guidance to practitioners who wish to utilize sparsity today, as well as to researchers whose goal is to push the frontier forward. We include the necessary background on mathematical methods in sparsification, describe phenomena such as early structure adaptation, the intricate relations between sparsity and the training process, and show techniques for achieving acceleration on real hardware. We also define a metric of pruned parameter efficiency that could serve as a baseline for comparison of different sparse networks. We close by speculating on how sparsity can improve future workloads and outline major open problems in the field.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.

Explainable recommendation attempts to develop models that generate not only high-quality recommendations but also intuitive explanations. The explanations may either be post-hoc or directly come from an explainable model (also called interpretable or transparent model in some context). Explainable recommendation tries to address the problem of why: by providing explanations to users or system designers, it helps humans to understand why certain items are recommended by the algorithm, where the human can either be users or system designers. Explainable recommendation helps to improve the transparency, persuasiveness, effectiveness, trustworthiness, and satisfaction of recommendation systems. In this survey, we review works on explainable recommendation in or before the year of 2019. We first highlight the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation on three perspectives: 1) We provide a chronological research timeline of explainable recommendation, including user study approaches in the early years and more recent model-based approaches. 2) We provide a two-dimensional taxonomy to classify existing explainable recommendation research: one dimension is the information source (or display style) of the explanations, and the other dimension is the algorithmic mechanism to generate explainable recommendations. 3) We summarize how explainable recommendation applies to different recommendation tasks, such as product recommendation, social recommendation, and POI recommendation. We also devote a section to discuss the explanation perspectives in broader IR and AI/ML research. We end the survey by discussing potential future directions to promote the explainable recommendation research area and beyond.

北京阿比特科技有限公司