亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quadratization refers to a transformation of an arbitrary system of polynomial ordinary differential equations to a system with at most quadratic right-hand side. Such a transformation unveils new variables and model structures that facilitate model analysis, simulation, and control and offers a convenient parameterization for data-driven approaches. Quadratization techniques have found applications in diverse fields, including systems theory, fluid mechanics, chemical reaction modeling, and mathematical analysis. In this study, we focus on quadratizations that preserve the stability properties of the original model, specifically dissipativity at given equilibria. This preservation is desirable in many applications of quadratization including reachability analysis and synthetic biology. We establish the existence of dissipativity-preserving quadratizations, develop an algorithm for their computation, and demonstrate it in several case studies.

相關內容

Belnap-Dunn logic, also knows as the logic of First-Degree Entailment, is a logic that can serve as the underlying logic of theories that are inconsistent or incomplete. For various reasons, different expansions of Belnap-Dunn logic with non-classical connectives have been studied. This paper investigates the question whether those expansions are interdefinable with an expansion whose connectives include only classical connectives. This is worth knowing because it is difficult to say how close a logic with non-classical connectives is related to classical logic. The notion of interdefinability of logics used is based on a general notion of definability of a connective in a logic that seems to have been forgotten.

As the development of formal proofs is a time-consuming task, it is important to devise ways of sharing the already written proofs to prevent wasting time redoing them. One of the challenges in this domain is to translate proofs written in proof assistants based on impredicative logics to proof assistants based on predicative logics, whenever impredicativity is not used in an essential way. In this paper we present a transformation for sharing proofs with a core predicative system supporting prenex universe polymorphism (like in Agda). It consists in trying to elaborate each term into a predicative universe polymorphic term as general as possible. The use of universe polymorphism is justified by the fact that mapping each universe to a fixed one in the target theory is not sufficient in most cases. During the elaboration, we need to solve unification problems in the equational theory of universe levels. In order to do this, we give a complete characterization of when a single equation admits a most general unifier. This characterization is then employed in a partial algorithm which uses a constraint-postponement strategy for trying to solve unification problems. The proposed translation is of course partial, but in practice allows one to translate many proofs that do not use impredicativity in an essential way. Indeed, it was implemented in the tool Predicativize and then used to translate semi-automatically many non-trivial developments from Matita's library to Agda, including proofs of Bertrand's Postulate and Fermat's Little Theorem, which (as far as we know) were not available in Agda yet.

For problems of time-harmonic scattering by rational polygonal obstacles, embedding formulae express the far-field pattern induced by any incident plane wave in terms of the far-field patterns for a relatively small (frequency-independent) set of canonical incident angles. Although these remarkable formulae are exact in theory, here we demonstrate that: (i) they are highly sensitive to numerical errors in practice, and (ii) direct calculation of the coefficients in these formulae may be impossible for particular sets of canonical incident angles, even in exact arithmetic. Only by overcoming these practical issues can embedding formulae provide a highly efficient approach to computing the far-field pattern induced by a large number of incident angles. Here we address challenges (i) and (ii), supporting our theory with numerical experiments. Challenge (i) is solved using techniques from computational complex analysis: we reformulate the embedding formula as a complex contour integral and prove that this is much less sensitive to numerical errors. In practice, this contour integral can be efficiently evaluated by residue calculus. Challenge (ii) is addressed using techniques from numerical linear algebra: we oversample, considering more canonical incident angles than are necessary, thus expanding the set of valid coefficient vectors. The coefficient vector can then be selected using either a least squares approach or column subset selection.

We introduce a multiphysics and geometric multiscale computational model, suitable to describe the hemodynamics of the whole human heart, driven by a four-chamber electromechanical model. We first present a study on the calibration of the biophysically detailed RDQ20 activation model (Regazzoni et al., 2020) that is able to reproduce the physiological range of hemodynamic biomarkers. Then, we demonstrate that the ability of the force generation model to reproduce certain microscale mechanisms, such as the dependence of force on fiber shortening velocity, is crucial to capture the overall physiological mechanical and fluid dynamics macroscale behavior. This motivates the need for using multiscale models with high biophysical fidelity, even when the outputs of interest are relative to the macroscale. We show that the use of a high-fidelity electromechanical model, combined with a detailed calibration process, allows us to achieve remarkable biophysical fidelity in terms of both mechanical and hemodynamic quantities. Indeed, our electromechanical-driven CFD simulations - carried out on an anatomically accurate geometry of the whole heart - provide results that match the cardiac physiology both qualitatively (in terms of flow patterns) and quantitatively (when comparing in silico results with biomarkers acquired in vivo). We consider the pathological case of left bundle branch block, and we investigate the consequences that an electrical abnormality has on cardiac hemodynamics thanks to our multiphysics integrated model. The computational model that we propose can faithfully predict a delay and an increasing wall shear stress in the left ventricle in the pathological condition. The interaction of different physical processes in an integrated framework allows us to faithfully describe and model this pathology, by capturing and reproducing the intrinsic multiphysics nature of the human heart.

Deep learning methods have access to be employed for solving physical systems governed by parametric partial differential equations (PDEs) due to massive scientific data. It has been refined to operator learning that focuses on learning non-linear mapping between infinite-dimensional function spaces, offering interface from observations to solutions. However, state-of-the-art neural operators are limited to constant and uniform discretization, thereby leading to deficiency in generalization on arbitrary discretization schemes for computational domain. In this work, we propose a novel operator learning algorithm, referred to as Dynamic Gaussian Graph Operator (DGGO) that expands neural operators to learning parametric PDEs in arbitrary discrete mechanics problems. The Dynamic Gaussian Graph (DGG) kernel learns to map the observation vectors defined in general Euclidean space to metric vectors defined in high-dimensional uniform metric space. The DGG integral kernel is parameterized by Gaussian kernel weighted Riemann sum approximating and using dynamic message passing graph to depict the interrelation within the integral term. Fourier Neural Operator is selected to localize the metric vectors on spatial and frequency domains. Metric vectors are regarded as located on latent uniform domain, wherein spatial and spectral transformation offer highly regular constraints on solution space. The efficiency and robustness of DGGO are validated by applying it to solve numerical arbitrary discrete mechanics problems in comparison with mainstream neural operators. Ablation experiments are implemented to demonstrate the effectiveness of spatial transformation in the DGG kernel. The proposed method is utilized to forecast stress field of hyper-elastic material with geometrically variable void as engineering application.

We use backward error analysis for differential equations to obtain modified or distorted equations describing the behaviour of the Newmark scheme applied to the transient structural dynamics equation. Using these results, we show how to construct compensation terms from the original parameters of the system, which improve the performance of Newmark simulations without changing the time step or modifying the scheme itself. Two such compensations are given: one eliminates numerical damping, while the other achieves fourth-order accurate calculations using the traditionally second-order Newmark method.

We introduce a causal regularisation extension to anchor regression (AR) for improved out-of-distribution (OOD) generalisation. We present anchor-compatible losses, aligning with the anchor framework to ensure robustness against distribution shifts. Various multivariate analysis (MVA) algorithms, such as (Orthonormalized) PLS, RRR, and MLR, fall within the anchor framework. We observe that simple regularisation enhances robustness in OOD settings. Estimators for selected algorithms are provided, showcasing consistency and efficacy in synthetic and real-world climate science problems. The empirical validation highlights the versatility of anchor regularisation, emphasizing its compatibility with MVA approaches and its role in enhancing replicability while guarding against distribution shifts. The extended AR framework advances causal inference methodologies, addressing the need for reliable OOD generalisation.

We develop a new, powerful method for counting elements in a multiset. As a first application, we use this algorithm to study the number of occurrences of patterns in a permutation. For patterns of length 3 there are two Wilf classes, and the general behaviour of these is reasonably well-known. We slightly extend some of the known results in that case, and exhaustively study the case of patterns of length 4, about which there is little previous knowledge. For such patterns, there are seven Wilf classes, and based on extensive enumerations and careful series analysis, we have conjectured the asymptotic behaviour for all classes.

We address a prime counting problem across the homology classes of a graph, presenting a graph-theoretical Dirichlet-type analogue of the prime number theorem. The main machinery we have developed and employed is a spectral antisymmetry theorem, revealing that the spectra of the twisted graph adjacency matrices have an antisymmetric distribution over the character group of the graph. Additionally, we derive some trace formulas based on the twisted adjacency matrices as part of our analysis.

We introduce an amortized variational inference algorithm and structured variational approximation for state-space models with nonlinear dynamics driven by Gaussian noise. Importantly, the proposed framework allows for efficient evaluation of the ELBO and low-variance stochastic gradient estimates without resorting to diagonal Gaussian approximations by exploiting (i) the low-rank structure of Monte-Carlo approximations to marginalize the latent state through the dynamics (ii) an inference network that approximates the update step with low-rank precision matrix updates (iii) encoding current and future observations into pseudo observations -- transforming the approximate smoothing problem into an (easier) approximate filtering problem. Overall, the necessary statistics and ELBO can be computed in $O(TL(Sr + S^2 + r^2))$ time where $T$ is the series length, $L$ is the state-space dimensionality, $S$ are the number of samples used to approximate the predict step statistics, and $r$ is the rank of the approximate precision matrix update in the update step (which can be made of much lower dimension than $L$).

北京阿比特科技有限公司