We offer a theoretical characterization of off-policy evaluation (OPE) in reinforcement learning using function approximation for marginal importance weights and $q$-functions when these are estimated using recent minimax methods. Under various combinations of realizability and completeness assumptions, we show that the minimax approach enables us to achieve a fast rate of convergence for weights and quality functions, characterized by the critical inequality \citep{bartlett2005}. Based on this result, we analyze convergence rates for OPE. In particular, we introduce novel alternative completeness conditions under which OPE is feasible and we present the first finite-sample result with first-order efficiency in non-tabular environments, i.e., having the minimal coefficient in the leading term.
Everyday tasks of long-horizon and comprising a sequence of multiple implicit subtasks still impose a major challenge in offline robot control. While a number of prior methods aimed to address this setting with variants of imitation and offline reinforcement learning, the learned behavior is typically narrow and often struggles to reach configurable long-horizon goals. As both paradigms have complementary strengths and weaknesses, we propose a novel hierarchical approach that combines the strengths of both methods to learn task-agnostic long-horizon policies from high-dimensional camera observations. Concretely, we combine a low-level policy that learns latent skills via imitation learning and a high-level policy learned from offline reinforcement learning for skill-chaining the latent behavior priors. Experiments in various simulated and real robot control tasks show that our formulation enables producing previously unseen combinations of skills to reach temporally extended goals by "stitching" together latent skills through goal chaining with an order-of-magnitude improvement in performance upon state-of-the-art baselines. We even learn one multi-task visuomotor policy for 25 distinct manipulation tasks in the real world which outperforms both imitation learning and offline reinforcement learning techniques.
Two aspects of neural networks that have been extensively studied in the recent literature are their function approximation properties and their training by gradient descent methods. The approximation problem seeks accurate approximations with a minimal number of weights. In most of the current literature these weights are fully or partially hand-crafted, showing the capabilities of neural networks but not necessarily their practical performance. In contrast, optimization theory for neural networks heavily relies on an abundance of weights in over-parametrized regimes. This paper balances these two demands and provides an approximation result for shallow networks in $1d$ with non-convex weight optimization by gradient descent. We consider finite width networks and infinite sample limits, which is the typical setup in approximation theory. Technically, this problem is not over-parametrized, however, some form of redundancy reappears as a loss in approximation rate compared to best possible rates.
Flocking control is a significant problem in multi-agent systems such as multi-agent unmanned aerial vehicles and multi-agent autonomous underwater vehicles, which enhances the cooperativity and safety of agents. In contrast to traditional methods, multi-agent reinforcement learning (MARL) solves the problem of flocking control more flexibly. However, methods based on MARL suffer from sample inefficiency, since they require a huge number of experiences to be collected from interactions between agents and the environment. We propose a novel method Pretraining with Demonstrations for MARL (PwD-MARL), which can utilize non-expert demonstrations collected in advance with traditional methods to pretrain agents. During the process of pretraining, agents learn policies from demonstrations by MARL and behavior cloning simultaneously, and are prevented from overfitting demonstrations. By pretraining with non-expert demonstrations, PwD-MARL improves sample efficiency in the process of online MARL with a warm start. Experiments show that PwD-MARL improves sample efficiency and policy performance in the problem of flocking control, even with bad or few demonstrations.
In domains where sample sizes are limited, efficient learning algorithms are critical. Learning using privileged information (LuPI) offers increased sample efficiency by allowing prediction models access to types of information at training time which is unavailable when the models are used. In recent work, it was shown that for prediction in linear-Gaussian dynamical systems, a LuPI learner with access to intermediate time series data is never worse and often better in expectation than any unbiased classical learner. We provide new insights into this analysis and generalize it to nonlinear prediction tasks in latent dynamical systems, extending theoretical guarantees to the case where the map connecting latent variables and observations is known up to a linear transform. In addition, we propose algorithms based on random features and representation learning for the case when this map is unknown. A suite of empirical results confirm theoretical findings and show the potential of using privileged time-series information in nonlinear prediction.
Decentralized learning offers privacy and communication efficiency when data are naturally distributed among agents communicating over an underlying graph. Motivated by overparameterized learning settings, in which models are trained to zero training loss, we study algorithmic and generalization properties of decentralized learning with gradient descent on separable data. Specifically, for decentralized gradient descent (DGD) and a variety of loss functions that asymptote to zero at infinity (including exponential and logistic losses), we derive novel finite-time generalization bounds. This complements a long line of recent work that studies the generalization performance and the implicit bias of gradient descent over separable data, but has thus far been limited to centralized learning scenarios. Notably, our generalization bounds match in order their centralized counterparts. Critical behind this, and of independent interest, is establishing novel bounds on the training loss and the rate-of-consensus of DGD for a class of self-bounded losses. Finally, on the algorithmic front, we design improved gradient-based routines for decentralized learning with separable data and empirically demonstrate orders-of-magnitude of speed-up in terms of both training and generalization performance.
We consider the stochastic gradient descent (SGD) algorithm driven by a general stochastic sequence, including i.i.d noise and random walk on an arbitrary graph, among others; and analyze it in the asymptotic sense. Specifically, we employ the notion of `efficiency ordering', a well-analyzed tool for comparing the performance of Markov Chain Monte Carlo (MCMC) samplers, for SGD algorithms in the form of Loewner ordering of covariance matrices associated with the scaled iterate errors in the long term. Using this ordering, we show that input sequences that are more efficient for MCMC sampling also lead to smaller covariance of the errors for SGD algorithms in the limit. This also suggests that an arbitrarily weighted MSE of SGD iterates in the limit becomes smaller when driven by more efficient chains. Our finding is of particular interest in applications such as decentralized optimization and swarm learning, where SGD is implemented in a random walk fashion on the underlying communication graph for cost issues and/or data privacy. We demonstrate how certain non-Markovian processes, for which typical mixing-time based non-asymptotic bounds are intractable, can outperform their Markovian counterparts in the sense of efficiency ordering for SGD. We show the utility of our method by applying it to gradient descent with shuffling and mini-batch gradient descent, reaffirming key results from existing literature under a unified framework. Empirically, we also observe efficiency ordering for variants of SGD such as accelerated SGD and Adam, open up the possibility of extending our notion of efficiency ordering to a broader family of stochastic optimization algorithms.
We propose Deterministic Sequencing of Exploration and Exploitation (DSEE) algorithm with interleaving exploration and exploitation epochs for model-based RL problems that aim to simultaneously learn the system model, i.e., a Markov decision process (MDP), and the associated optimal policy. During exploration, DSEE explores the environment and updates the estimates for expected reward and transition probabilities. During exploitation, the latest estimates of the expected reward and transition probabilities are used to obtain a robust policy with high probability. We design the lengths of the exploration and exploitation epochs such that the cumulative regret grows as a sub-linear function of time.
Efficiently reducing models of chemically reacting flows is often challenging because their characteristic features such as sharp gradients in the flow fields and couplings over various time and length scales lead to dynamics that evolve in high-dimensional spaces. In this work, we show that online adaptive reduced models that construct nonlinear approximations by adapting low-dimensional subspaces over time can predict well latent dynamics with properties similar to those found in chemically reacting flows. The adaptation of the subspaces is driven by the online adaptive empirical interpolation method, which takes sparse residual evaluations of the full model to compute low-rank basis updates of the subspaces. Numerical experiments with a premixed flame model problem show that reduced models based on online adaptive empirical interpolation accurately predict flame dynamics far outside of the training regime and in regimes where traditional static reduced models, which keep reduced spaces fixed over time and so provide only linear approximations of latent dynamics, fail to make meaningful predictions.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.